Video. Hopefully they are satisfied with this. Otherwise, I think we would end up with planet of the apes…
At least they know which gene helps make brains bigger.
Scientists used a human gene to grow bigger monkey brains.
The ability to cancel magnetic fields has benefits in quantum technology, biomedicine, and neurology.
A team of scientists including two physicists at the University of Sussex has found a way to circumvent a 178-year old theory which means they can effectively cancel magnetic fields at a distance. They are the first to be able to do so in a way that has practical benefits.
The work is hoped to have a wide variety of applications. For example, patients with neurological disorders such as Alzheimer’s or Parkinson’s might in the future receive a more accurate diagnosis. With the ability to cancel out ‘noisy’ external magnetic fields, doctors using magnetic field scanners will be able to see more accurately what is happening in the brain.
Summary: Researchers have discovered a two-pronged approach to restore myelin on regenerated axons in a mouse model of optic nerve damage. The findings have positive implications for the treatment of multiple sclerosis.
Source: Children’s Hospital of Boston
Loss of myelin—the fatty substance that surrounds the axons of nerve cells—is one of the reasons nerve cells fail to recover after injury and in some diseases. Myelin acts like insulation, covering the long axon threads that enable high-speed communication between neurons. Without myelin, the neurons may not be able to coordinate well, leading to less than optimal function.
Neuroscientists at University College London (UCL) have used laser beams to “switch on” neurons in mice, providing new insight into the hidden workings of memory and showing how memories underpin the brain’s inner GPS system.
The study, published in the journal Cell, explains how researchers harnessed an ‘all-optical’ approach using twin lasers to simultaneously read and write the activity of ‘place cells’ (a type of neuron) in mice, as they navigated a virtual reality environment.
Remarkably, by stimulating the place cells, scientists were able to reactivate (or retrieve) the memory of a location where the mice obtained a reward, which in turn “mentally teleported” the mice, causing them to act as if they were in the rewarded place.
Circa 2019
New research conducted at OHSU in Portland, Oregon, identifies a gene that could provide a new target for developing medication to prevent and treat alcoholism.
Scientists at the Oregon National Primate Research Center at OHSU discovered a gene that had lower expression in the brains of nonhuman primates that voluntarily consumed heavy amounts of alcohol compared with those that drank less.
Furthermore, the research team unraveled a link between alcohol and how it modulates the levels of activity of this particular gene. Researchers discovered that when they increased the levels of the gene encoded protein in mice, they reduced alcohol consumption by almost 50 percent without affecting the total amount of fluid consumed or their overall well-being.
Summary: A bacterium found in the soil close to the roots of ginseng plants, appears to significantly dissociate the protein aggregates associated with Alzheimer’s disease.
Source: Wiley
A bacterium found among the soil close to roots of ginseng plants could provide a new approach for the treatment of Alzheimer’s. Rhizolutin, a novel class of compounds with a tricyclic framework, significantly dissociates the protein aggregates associated with Alzheimer’s disease both in vivo and in vitro, as reported by scientists in the journal Angewandte Chemie.
Summary: DMT, a natural component of ayahuasca tea, promotes neurogenesis, a new study reports. Researchers found DMT was capable of activating neural stem cells and promoted the formation of new neurons.
Source: Complutense University of Madrid.
One of the main natural components of ayahuasca tea, dimethyltryptamine (DMT), promotes neurogenesis (the formation of new neurons) according to research led by the Complutense University of Madrid (UCM).
The study of the brain of extinct organisms sheds lights on their behaviors. However, soft tissues, like the brain, are not usually preserved for long periods. Hence, researchers reconstruct the brains of dinosaurs by analyzing the cranial cavities under computed tomography. It demands well-preserved braincases, which is the region that envelops the brain tissues. To date, complete and well-preserved neurocrania from the oldest dinosaurs worldwide have not been found.
In 2015, a Brazilian paleontologist from the Universidade Federal de Santa Maria, Dr. Rodrigo Temp Müller, unearthed an exceptionally well-preserved skeleton from a fossiliferous locality in southern Brazil. The skeleton, approximately 233 million years old (Triassic period), belongs to a small carnivorous dinosaur named Buriolestes schultzi and the entire braincase was preserved. Now, Brazilian researchers have reconstructed the first complete brain of one of the oldest dinosaurs worldwide.
The study was published in Journal of Anatomy and performed by Rodrigo T. Müller, José D. Ferreira, Flávio A. Pretto, and Leonardo Kerber from the Universidade Federal de Santa Maria and Mario Bronzati from the Universidade de São Paulo.