Toggle light / dark theme

New Research Suggests That Obesity Is a Neurodevelopmental Disorder

Over the last several decades, obesity has rapidly grown to affect more than 2 billion people, making it one of the biggest contributors to poor health globally. Many individuals still have trouble losing weight despite decades of study on diet and exercise regimens. Researchers from Baylor College of Medicine and affiliated institutions now believe they understand why, and they argue that the emphasis should be shifted from treating obesity to preventing it.

The research team reports in the journal Science Advances that early-life molecular processes of brain development are likely a major determinant of obesity risk. Previous large human studies have shown that the genes most strongly associated with obesity are expressed in the developing brain. This most recent study in mice focused on epigenetic development. Epigenetics is a molecular bookmarking system that regulates whether genes are utilized or not in certain cell types.

“Decades of research in humans and animal models have shown that environmental influences during critical periods of development have a major long-term impact on health and disease,” said corresponding author Dr. Robert Waterland, professor of pediatrics-nutrition and a member of the USDA Children’s Nutrition Research Center at Baylor. “Body weight regulation is very sensitive to such ‘developmental programming,’ but exactly how this works remains unknown.”

New Pill Replicates Exercise and Strengthens Muscle

A drug has been identified by researchers at Tokyo Medical and Dental University (TMDU) that replicates the benefits of exercise on mice’s bones and muscles.

You can look and feel better by keeping up a regular exercise schedule, but did you know that exercise also supports bone and muscle health? Locomotor fragility, which affects people who are unable to exercise, causes the muscles and bones to deteriorate. Recently, Japanese researchers discovered a new drug that, by producing effects comparable to those of exercise, may help treat locomotor frailty.

Physical inactivity can result in a weakening of the muscles (known as sarcopenia) and bones (known as osteoporosis). Exercise dispels this frailty by boosting muscular strength and suppressing bone resorption while simultaneously promoting bone formation. Exercise therapy, however, cannot be used in every clinical situation. When patients have dementia, cerebrovascular disease, or are already bedridden, drug therapy may be very helpful for treating sarcopenia and osteoporosis. However, there is no one drug that targets both tissues at the same time.

Adult Brain Structure Is Not Fixed: Scientists Discover Depression Treatment Increases Brain Connectivity

Most scientists believe that the structure of the adult brain is generally rigid and incapable of rapid changes. However, new research has now revealed that this is not true. In a new study, German scientists have shown that in-patient treatment for depression can lead to an increase in brain connectivity. Moreover, those individuals who respond well to this treatment show a greater increase in connectivity than those who don’t.

Presenting the work at the European College for Neuropsychopharmacology Congress in Vienna, lead researcher, Professor Jonathan Repple said:

“This means that the brain structure of patients with serious clinical depression is not as fixed as we thought, and we can improve brain structure within a short time frame, around 6 weeks. We found that if this treatment leads to an increase in brain connectivity, it is also effective in tackling depression symptoms. This gives hope to patients who believe nothing can change and they have to live with a disease forever, because it is “set in stone” in their brain.”

Brain Evolution Is Linked to Competition

Summary: In a highly competitive environment, Trinidadian killifish grow larger brains. This neuro-evolution allows for greater fitness and survival rates.

Source: UT Arlington.

In response to a high-competition environment, Trinidadian killifish evolve larger brains, increasing their fitness and survival rates, according to a new study in Ecology Letters by biologists at The University of Texas at Arlington.

Our brains could use quantum computation

“We adapted an idea, developed for experiments to prove the existence of quantum gravity.”

According to Trinity College Dublin scientists, our brains could use quantum computation after applying an idea created to prove the existence of quantum gravity to investigate the human brain and its workings.

As stated, the correlation between the measured brain functions and conscious awareness and short-term memory function suggests that quantum processes are also a part of cognitive and conscious brain functioning.


Agsandrew/iStock.

Published in the Journal of Physics Communications on October 7, the study could provide information about consciousness, which is still a mystery for scientists.

Scientists find a new contributor to Alzheimer’s disease

Alzheimer’s disease is a brain disorder that slowly destroys memory and thinking skills and, eventually, the ability to carry out the simplest tasks. In most people with the disease — those with the late-onset type symptoms first appear in their mid-60s. In a study from Brigham and Women’s Hospital, scientists found a new contributor to Alzheimer’s disease.

New research suggests our brains use quantum computation

Scientists from Trinity College Dublin believe our brains could use quantum computation. Their discovery comes after they adapted an idea developed to prove the existence of quantum gravity to explore the human brain and its workings.

The brain functions measured were also correlated to short-term memory performance and conscious awareness, suggesting are also part of cognitive and conscious brain functions.

If the team’s results can be confirmed—likely requiring advanced multidisciplinary approaches—they would enhance our general understanding of how the brain works and potentially how it can be maintained or even healed. They may also help find and build even more advanced quantum computers.

An efficient and highly performing memristor-based reservoir computing system

Reservoir computing (RC) is an approach for building computer systems inspired by current knowledge of the human brain. Neuromorphic computing architectures based on this approach are comprised of dynamic physical nodes, which combined can process spatiotemporal signals.

Researchers at Tsinghua University in China have recently created a new RC system based on memristors, that regulate the flow of electrical current in a circuit, while also recording the amount of charge that previously flowed through it. This RC system, introduced in a paper published in Nature Electronics, has been found to achieve remarkable results, both in terms of performance and efficiency.

“The basic architecture of our memristor RC system comes from our earlier work published in Nature Communications, where we validated the feasibility of building analog reservoir layer with dynamic memristors,” Jianshi Tang, one of the researchers who carried out the study, told TechXplore. “In this new work, we further build the analog readout layer with non-volatile memristors and integrate it with the dynamic memristor array-based parallel reservoir layer to implement a fully analog RC system.”

Research Paves Way for Innovative Theory of Cognitive Processing

Summary: A new theory suggests glial cells, specifically astrocytes, play a key role in cognitive processing.

Source: University Health Network.

A team of scientists from the Krembil Brain Institute, part of the University Health Network in Toronto, and Duke University in Durham, North Carolina, has developed the first computer model predicting the role of cortical glial cells in cognition.

Your Body Has an Internal Clock That Dictates When You Eat, Sleep and Might Have a Heart Attack

Have you ever suffered from jet lag or struggled after turning the clock forward or back an hour for daylight saving time? These are examples of you feeling the effects of what researchers call your biological clock, or circadian rhythm – the “master pacemaker” that synchronizes how your body responds to the passing of one day to the next.

This “clock” is made up of about 20,000 neurons in the hypothalamus. This area near the center of the brain coordinates your body’s unconscious functions, such as breathing and blood pressure. Humans aren’t the only lifeforms that have an internal clock system: All vertebrates – or mammals, birds, reptiles, amphibians, and fish – have biological clocks, as do plants, fungi, and bacteria. Biological clocks are why cats are most active at dawn and dusk, and why flowers bloom at certain times of the day.

Chronobiology is the study of circadian rhythms, the physical, mental, and behavioral changes that follow a 24-hour cycle. These natural processes respond principally to light and dark and affect most living things, including animals, plants, and microbes.

/* */