Toggle light / dark theme

Summary: Researchers have developed a new sensor that allows scientists to image the brain without missing signals for an extended period of time and deeper in the brain than current technology allows.

Source: Baylor College of Medicine.

As you are reading these words, certain regions of your brain are displaying a flurry of millisecond-fast electrical activity. Visualizing and measuring this electrical activity is crucial to understand how the brain enables us to see, move, behave or read these words.

The Brain Chemical Involved in Consciousness

So how do we help these people? The brain is more than just a congregation of different areas. Brain cells also rely on a number of chemicals to communicate with other cells, enabling a number of brain functions. Before our study, there was already some evidence that dopamine, well known for its role in reward, also plays a role in disorders of consciousness.

For example, one study showed that dopamine release in the brain is impaired in minimally conscious patients. Moreover, a number of small-scale studies have shown that patients’ consciousness can improve by giving them drugs that act through dopamine.

Cells use selective autophagy or self-degradation of undesired proteins to maintain cellular homeostasis (i.e., a state of balance). This process is controlled by autophagy receptors, which mediate the selection of a target protein that is subsequently “cleared.”

Tau proteins, which play a crucial role in the internal architecture of neurons in the brain, abnormally accumulate within neurons in disorders such as dementia and Alzheimer’s.

Alzheimer’s disease is a disease that attacks the brain, causing a decline in mental ability that worsens over time. It is the most common form of dementia and accounts for 60 to 80 percent of dementia cases. There is no current cure for Alzheimer’s disease, but there are medications that can help ease the symptoms.

Yet, in the newly-created fields of quantum physics and cognitive science, difficult and troubling mysteries still linger, and occasionally entwine. Why do quantum states suddenly resolve when they’re measured, making it at least superficially appear that observation by a conscious mind has the capacity to change the physical world? What does that tell us about consciousness?

Smartphones, tablets, computer screens — all digital media has detrimental effects on your brain. That is a position that Professor Manfred Spitzer, a neuroscientist and author of several books, defends. You might like what you’ll hear, you might not, but don’t say that you haven’t been warned. Especially if you have kids running around with smartphones all day long.

Created by Rimantas Vančys.
Video footage and graphics: Envato Elements.
Additional material: NASA.
Music: Envato Elements.

For more cool science visit:
• Website: https://www.scienceandcocktails.org.
• Facebook: https://www.facebook.com/scienceandcocktailscph/
• Youtube: https://www.youtube.com/c/ScienceCocktails

A Brain-Computer Interface (BCI) is a promising technology that has received increased attention in recent years. BCIs create a direct link from your brain to a computer. This technology has applications to many industries and sectors of our life. BCIs redefine how we approach medical treatment and communication for individuals with various conditions or injuries. BCIs also have applications in entertainment, specifically video games and VR. From being able to control a prosthetic limb with your mind, to being able to play a video game with your mind—the potential of BCIs are endless.

What are your thoughts on Brain-Computer Interfaces? Let us know!
Any disruptive technologies you would like us to cover? Dm us on our Instagram (@toyvirtualstructures).
—————–
Check out our curated playlists:
https://www.youtube.com/channel/UCr5Akn6LhGDin7coWM7dfUg/playlists.
—————–
Media Used:

Tom Oxley | TED

—————–

Summary: CGRP neurons found in subregions of the thalamus and brainstem relay multisensory threat information to the amygdala. These neural circuits are essential for the formation of aversive memories, a new study reports.

Source: Salk Institute.

Salk scientists have uncovered a molecular pathway that distills threatening sights, sounds and smells into a single message: Be afraid.