Toggle light / dark theme

New research clarifies connection between autism and the microbiome

The biological roots of autism continue to perplex researchers, despite a growing body of studies looking at an increasing array of genetic, cellular and microbial data. Recently, scientists have homed in on a new and promising area of focus: the microbiome. This collection of microbes that inhabit the human gut has been shown to play a role in autism, but the mechanics of this link have remained awash in ambiguity.

Taking a fresh computational approach to the problem, a study published today, June 26, in Nature Neuroscience sheds new light on the relationship between the microbiome and . This research—which originated at the Simons Foundation’s Autism Research Initiative (SFARI) and involved an innovative reanalysis of dozens of previously published datasets—aligns with a recent, long-term study of autistic individuals that centered on a microbiome-focused treatment intervention. These findings also underscore the importance of longitudinal studies in elucidating the interplay between the microbiome and complex conditions such as autism.

“We were able to harmonize seemingly disparate data from different studies and find a common language with which to unite them. With this, we were able to identify a microbial signature that distinguishes autistic from neurotypical individuals across many studies,” says Jamie Morton, one of the study’s corresponding authors, who began this work while a postdoctoral researcher at the Simons Foundation and is now an independent consultant. “But the bigger point is that going forward, we need robust long-term studies that look at as many datasets as possible and understand how they change when there is a [therapeutic] intervention.”

Retina cell breakthrough could help treat blindness

When the scaffold is treated with a steroid called fluocinolone acetonide, which protects against inflammation, the resilience of the cells appears to increase, promoting growth of eye cells. These findings are important in the future development of ocular tissue for transplantation into the patient’s eye.


Scientists have found a way to use nanotechnology to create a 3D ‘scaffold’ to grow cells from the retina-paving the way for potential new ways of treating a common cause of blindness.

Researchers, led by Professor Barbara Pierscionek from Anglia Ruskin University (ARU), have been working on a way to successfully grow retinal pigment epithelial (RPE) cells that stay healthy and viable for up to 150 days. RPE cells sit just outside the neural part of the retina and, when damaged, can cause vision to deteriorate.

It is the first time this technology, called ‘electrospinning’, has been used to create a scaffold on which the RPE cells could grow, and could revolutionise treatment for one of age-related macular degeneration, one of the world’s most common vision complaints.

Heart rate variability biofeedback training can enhance positive memory recall

New research provides evidence that training our heart rate can indirectly influence our emotional memory, making us more likely to remember positive experiences. The study has been published in the journal Applied Psychophysiology and Biofeedback.

The study aimed to explore whether certain brain circuits are responsible for regulating both heart rate and emotion, specifically focusing on the role of the ventromedial prefrontal cortex (vmPFC). Additionally, the researchers were interested in understanding how biofeedback training, which involves providing individuals with real-time physiological feedback and training them to modify their own physiological responses, could impact emotional memory biases.

“There have been many studies showing that people with higher resting HRV tend to experience less negative emotions,” study author Mara Mather told PsyPost. “But most of the research has been correlational and so it is not clear if the individual differences in HRV play any direct role in the emotional differences. Thus, we were interested in whether manipulating HRV could affect people’s emotional biases.”

The misinformation effect | Elizabeth Loftus | Nobel Prize Summit 2023

Elizabeth Loftus, psychologist and distinguished professor, University of California, Irvine, takes the audience at the Nobel Prize Summit 2023 inside the effect misinformation has on our brains, including the limits of human memory.

About Nobel Prize Summit 2023:

How can we build trust in truth, facts and scientific evidence so that we can create a hopeful future for all?

Misinformation is eroding our trust in science and runs the risk of becoming one of the greatest threats to our society today.

This year’s Nobel Prize Summit brought together laureates, leading experts and the public in a conversation on how we can combat misinformation, restore trust in science and create a hopeful future.

Nobel Prize Summit in partnership with National Academy of Sciences. Lead partner Knight Foundation. Contributing partner Luminate. Supporting organisations Annenberg Public Policy Center University of Pennsylvania, Rita Allen Foundation.

Positive effect of inaudible high-frequency components of sounds on glucose tolerance: a quasi-experimental crossover study

Pseudo or Real?


In this study, the FRS condition typically suppressed the increase in glucose levels in the OGTT compared with that in the HCS condition. This tendency was also observed after comparing glucose levels 1 h after glucose loading (Supplementary Fig. S2 online). The suppressive effect of the FRS condition on glucose elevation was more pronounced in the older age group and the group with high HbA1c. However, it was not evident in the younger age group or the group with low HbA1c. Similarly, this tendency was observed when we divided the participants into two groups: high glucose level and low glucose level by OGTT (Supplementary Fig. S3 online). These converging findings imply that sounds with inaudible HFC are more effective in improving glucose tolerance in individuals at a higher risk of glucose intolerance.

It is well experienced in daily practice that stress has a significant impact on glycemic control in patients with diabetes. Many reports have highlighted stress-induced increases in blood glucose levels in patients with type 2 diabetes22,23,24,25,26,27,28,29,30,31. In addition, a large population-based cohort study of Japanese participants reported a 1.22-fold (women) and 1.36-fold (men) increased risk of developing diabetes in individuals with high subjective stress levels compared with those with low levels32. This indicates that stress management influences the pathological transition of patients with diabetes and the prevention of its onset in healthy individuals or potential prediabetics. However, the effects of stress on individuals, both in type and degree, vary so widely33,34,35 that it is practically difficult to study them under experimentally controlled conditions, unlike with pharmacotherapy.

The effects of stress on blood glucose levels are believed to be primarily mediated by neural control from the brainstem and hypothalamus36,37. We considered it important to investigate the possibility that acoustic information acting on the hypothalamus and brainstem may have physiological effects on glucose tolerance, independent of psychological effects, rather than primarily reducing subjective stress, which varies considerably among individuals and is difficult to measure objectively.

We’re one step closer to reading an octopus’s mind

Nine brains, blue blood, instant camouflage: It’s no surprise that octopuses capture our interest and our imaginations. Science-fiction creators, in particular, have been inspired by these tentacled creatures.

An octopus’s remarkable intelligence makes it a unique subject for marine biologists and neuroscientists as well. Research has revealed the brain power of the octopus allows it to unscrew a jar or navigate a maze. But, like many children, the octopus also develops an impish tendency to push the boundaries of behavior. Several aquariums have found octopuses memorizing guard schedules to sneak into nearby tanks to steal fish; meanwhile, marine biologists have discovered that wild octopuses will punch fish … for no apparent reason.

According to Dr. Jennifer Maher, a professor at the University of Lethbridge in Canada, there are a “number of [different] types of learning [for octopuses]: cognitive tasks like tool use, memory of complex operations for future use, and observational learning.”

Neuroscientists shed new light on the roots of interpersonal neural synchrony during social interactions

Just by observing the natural behavior of someone we know well, our brain activity can start to sync up with theirs, according to new research published in NeuroImage. The findings shed light on the fascinating interplay between social behavior and brain activity.

Successful social interaction depends on our ability to exchange information with others and continuously update our understanding of their inner states and actions. The authors of the new study sought to better understand the role of a phenomenon called interpersonal neural synchrony (INS) – the alignment of brain activities between people who are interacting.

Previous studies have supported the idea that INS can predict the success of social interactions. However, most research on INS has focused on structured social tasks, trying to establish a relationship between INS and social behavior. What has been less clear is how INS originates or what triggers it.