Toggle light / dark theme

Retina cell breakthrough could help treat blindness

When the scaffold is treated with a steroid called fluocinolone acetonide, which protects against inflammation, the resilience of the cells appears to increase, promoting growth of eye cells. These findings are important in the future development of ocular tissue for transplantation into the patient’s eye.


Scientists have found a way to use nanotechnology to create a 3D ‘scaffold’ to grow cells from the retina-paving the way for potential new ways of treating a common cause of blindness.

Researchers, led by Professor Barbara Pierscionek from Anglia Ruskin University (ARU), have been working on a way to successfully grow retinal pigment epithelial (RPE) cells that stay healthy and viable for up to 150 days. RPE cells sit just outside the neural part of the retina and, when damaged, can cause vision to deteriorate.

It is the first time this technology, called ‘electrospinning’, has been used to create a scaffold on which the RPE cells could grow, and could revolutionise treatment for one of age-related macular degeneration, one of the world’s most common vision complaints.

Heart rate variability biofeedback training can enhance positive memory recall

New research provides evidence that training our heart rate can indirectly influence our emotional memory, making us more likely to remember positive experiences. The study has been published in the journal Applied Psychophysiology and Biofeedback.

The study aimed to explore whether certain brain circuits are responsible for regulating both heart rate and emotion, specifically focusing on the role of the ventromedial prefrontal cortex (vmPFC). Additionally, the researchers were interested in understanding how biofeedback training, which involves providing individuals with real-time physiological feedback and training them to modify their own physiological responses, could impact emotional memory biases.

“There have been many studies showing that people with higher resting HRV tend to experience less negative emotions,” study author Mara Mather told PsyPost. “But most of the research has been correlational and so it is not clear if the individual differences in HRV play any direct role in the emotional differences. Thus, we were interested in whether manipulating HRV could affect people’s emotional biases.”

The misinformation effect | Elizabeth Loftus | Nobel Prize Summit 2023

Elizabeth Loftus, psychologist and distinguished professor, University of California, Irvine, takes the audience at the Nobel Prize Summit 2023 inside the effect misinformation has on our brains, including the limits of human memory.

About Nobel Prize Summit 2023:

How can we build trust in truth, facts and scientific evidence so that we can create a hopeful future for all?

Misinformation is eroding our trust in science and runs the risk of becoming one of the greatest threats to our society today.

This year’s Nobel Prize Summit brought together laureates, leading experts and the public in a conversation on how we can combat misinformation, restore trust in science and create a hopeful future.

Nobel Prize Summit in partnership with National Academy of Sciences. Lead partner Knight Foundation. Contributing partner Luminate. Supporting organisations Annenberg Public Policy Center University of Pennsylvania, Rita Allen Foundation.

Positive effect of inaudible high-frequency components of sounds on glucose tolerance: a quasi-experimental crossover study

Pseudo or Real?


In this study, the FRS condition typically suppressed the increase in glucose levels in the OGTT compared with that in the HCS condition. This tendency was also observed after comparing glucose levels 1 h after glucose loading (Supplementary Fig. S2 online). The suppressive effect of the FRS condition on glucose elevation was more pronounced in the older age group and the group with high HbA1c. However, it was not evident in the younger age group or the group with low HbA1c. Similarly, this tendency was observed when we divided the participants into two groups: high glucose level and low glucose level by OGTT (Supplementary Fig. S3 online). These converging findings imply that sounds with inaudible HFC are more effective in improving glucose tolerance in individuals at a higher risk of glucose intolerance.

It is well experienced in daily practice that stress has a significant impact on glycemic control in patients with diabetes. Many reports have highlighted stress-induced increases in blood glucose levels in patients with type 2 diabetes22,23,24,25,26,27,28,29,30,31. In addition, a large population-based cohort study of Japanese participants reported a 1.22-fold (women) and 1.36-fold (men) increased risk of developing diabetes in individuals with high subjective stress levels compared with those with low levels32. This indicates that stress management influences the pathological transition of patients with diabetes and the prevention of its onset in healthy individuals or potential prediabetics. However, the effects of stress on individuals, both in type and degree, vary so widely33,34,35 that it is practically difficult to study them under experimentally controlled conditions, unlike with pharmacotherapy.

The effects of stress on blood glucose levels are believed to be primarily mediated by neural control from the brainstem and hypothalamus36,37. We considered it important to investigate the possibility that acoustic information acting on the hypothalamus and brainstem may have physiological effects on glucose tolerance, independent of psychological effects, rather than primarily reducing subjective stress, which varies considerably among individuals and is difficult to measure objectively.

We’re one step closer to reading an octopus’s mind

Nine brains, blue blood, instant camouflage: It’s no surprise that octopuses capture our interest and our imaginations. Science-fiction creators, in particular, have been inspired by these tentacled creatures.

An octopus’s remarkable intelligence makes it a unique subject for marine biologists and neuroscientists as well. Research has revealed the brain power of the octopus allows it to unscrew a jar or navigate a maze. But, like many children, the octopus also develops an impish tendency to push the boundaries of behavior. Several aquariums have found octopuses memorizing guard schedules to sneak into nearby tanks to steal fish; meanwhile, marine biologists have discovered that wild octopuses will punch fish … for no apparent reason.

According to Dr. Jennifer Maher, a professor at the University of Lethbridge in Canada, there are a “number of [different] types of learning [for octopuses]: cognitive tasks like tool use, memory of complex operations for future use, and observational learning.”

Neuroscientists shed new light on the roots of interpersonal neural synchrony during social interactions

Just by observing the natural behavior of someone we know well, our brain activity can start to sync up with theirs, according to new research published in NeuroImage. The findings shed light on the fascinating interplay between social behavior and brain activity.

Successful social interaction depends on our ability to exchange information with others and continuously update our understanding of their inner states and actions. The authors of the new study sought to better understand the role of a phenomenon called interpersonal neural synchrony (INS) – the alignment of brain activities between people who are interacting.

Previous studies have supported the idea that INS can predict the success of social interactions. However, most research on INS has focused on structured social tasks, trying to establish a relationship between INS and social behavior. What has been less clear is how INS originates or what triggers it.

Early drinkers might have reduced connectivity in the cognitive control network of the brain

A new neuroimaging study has found that individuals who consumed their first alcoholic drink before the age of 18 had weaker connections in the brain’s cognitive control network compared those who consumed their first alcoholic drink after the age of 18. This suggests that starting to drink alcohol at a young age might make this brain network less effective. The study was published in Psychiatry Research: Neuroimaging.

Although the adverse effects of alcohol consumption and related long-term health risks are well known, it is estimated that 30% of youth in the United States use alcohol by the eighth grade. 62% of adolescents report drinking their first alcoholic drink by the time they graduate from high school, around 18 years of age.

Studies have found that individuals who start using alcohol earlier are more likely to develop alcohol-related problems later in life. Individuals who drink their first alcoholic drink earlier are also more likely to get drunk for the first time at an earlier age. They are also more likely to participate in binge drinking i.e., to consume more than 5 standard drinks for men or more than 4 for women on a single occasion.

Robert Sapolsky: Justice and morality in the absence of free will | Full [Vert Dider] 2020

In September 2020 we sat down with Robert Sapolsky, Stanford professor and the author of Human Behavioral Biology lectures (https://youtu.be/NNnIGh9g6fA) to discuss if it’s possible for our society to reconcile our understanding of justice with scientific understanding of human behaviour.

Why do humans, most likely, have no free will? How does that link to depression and other psychiatric disorders? Can people accept the idea that there is no free will and start using, what science tells us about the reasons behind our behaviour, as a basis for making sense of justice and morality? If yes, can we even imagine what such society would look like?

This is a third interview with Robert. The first (https://youtu.be/VrQkl7PaA1s) and the second (https://youtu.be/yp9HE5xfojY) talks are available on our channel.