Toggle light / dark theme

Constantly worrying about events beyond your control significantly harms your physical health.

S stress-response system activated, leading to chronic stress. Over time, such stress can weaken the immune system, making us more susceptible to infections and illnesses. + Additionally, chronic stress is linked to cardiovascular issues, including hypertension and an increased risk of heart disease.

S prolonged exposure to stress hormones like cortisol can also lead to digestive problems, muscle tension, and headaches. + Moreover, the mental strain from focusing on uncontrollable factors can lead to unhealthy coping mechanisms, such as overeating or substance abuse, further impacting physical well-being.

S out there. It gets better. +

Get help: https://www.nimh.nih.gov/health/find-help


Stress affects all systems of the body including the musculoskeletal, respiratory, cardiovascular, endocrine, gastrointestinal, nervous, and reproductive systems.

Aging depletes the brain’s protective sugar shield, weakening defenses and fueling cognitive decline, but restoring key sugars may reverse these effects.

What if a critical piece of the puzzle of brain aging has been hiding in plain sight? While neuroscience has traditionally focused on proteins and DNA

DNA, or deoxyribonucleic acid, is a molecule composed of two long strands of nucleotides that coil around each other to form a double helix. It is the hereditary material in humans and almost all other organisms that carries genetic instructions for development, functioning, growth, and reproduction. Nearly every cell in a person’s body has the same DNA. Most DNA is located in the cell nucleus (where it is called nuclear DNA), but a small amount of DNA can also be found in the mitochondria (where it is called mitochondrial DNA or mtDNA).

Imagine that malignant brain tumors are not the unbridled chaos of unchecked growth we think they are, but they are actually communicating with brain cells in very specific ways. That’s what Stanford neuroscientist Michelle Monje MD, PhD, discovered about certain types of brain cancer (called gliomas), including a deadly childhood form called DIPG. It turns out that these tumors can form connections with the brain’s circuitry (just like brain cells do) in order to fuel their own growth. But it’s not just cancers that start in the brain that are doing this. Monje and Stanford researcher Julien Sage, PhD, discovered that a type of cancer that starts in the lungs also engages in this form of hijacking when it spreads to the brain. This is important because we now have significant insight into the process of tumor growth. And these findings help us better understand how we might be able to treat or stop these cancers altogether. For more information, read “Dangerous infiltrators” in Stanford Medicine magazine: https://stan.md/4gZHRh7

#Cancer #Neuroscience #BrainCancer #Glioma #CancerResearch #StanfordMedicine #TumorGrowth #CancerBreakthrough #MedicalResearch #BrainHealth #Oncology.
Stanford Medicine advances human health through world-class biomedical research, education and patient care. Bringing together the resources of Stanford University School of Medicine, Stanford Health Care and Lucile Packard Children’s Hospital, Stanford Medicine is committed to training future leaders in biomedicine and translating the latest discoveries into new ways to prevent, diagnose and treat disease.

The Stanford Medicine YouTube channel is a curated collection of contributions from our School of Medicine departments, divisions, students, and the community. Our diverse content includes coverage of events, presentations, lectures, and associated stories about the people of Stanford Medicine.

Reasoning about the physical world enables people to successfully interact with and manipulate their environment. In this Review, Hartshorne and Jing bridge findings from education, developmental psychology and cognitive science and discuss how best to reconcile these approaches going forward.

A newly identified part of a brain circuit mixes sensory information, memories, and emotions to tell whether things are familiar or new, and important or just “background noise.”

Led by researchers from NYU Langone Health, the work found that a circuit known to carry messages from a brain region that processes sensory information, the entorhinal cortex (EC), to the memory processing center in the hippocampus (HC) has a previously unrecognized pathway that carries messages directly back to the EC.

Publishing online Feb. 18 in Nature Neuroscience, the study results show that this direct feedback loop sends signals fast enough to instantly tag sights and sounds linked to certain objects and places as more important by considering them in the context of memories and emotions.

Shen et al. investigate the use of Lactobacillus plantarum, a commensal bacterial strain, as a chassis for targeting the olfactory mucosa to facilitate precise nose-to-brain delivery of therapeutic molecules. When engineered to secrete appetite-regulating hormones, intranasal delivery of L. plantarum alleviates obesity-related symptoms in a mouse model.

“Can you hand me the… you know… the thingy? It’s right there next to that other doohickey!” Struggling to find the right word happens to all of us. In fact, it even has a name; lethologica, and it tends to become more common as we get older.

Forgetting words now and then isn’t a big deal, but if it starts happening frequently, it could be an early sign of changes in the brain linked to Alzheimer’s disease —long before more obvious symptoms appear. But here’s the twist: A recent University of Toronto study suggests that how fast you speak might be a better clue about brain health than the occasional word mix-up.

Nasal anti-CD3 therapy shows promise for treating traumatic brain injury by reducing neuroinflammation and aiding recovery in mice. It induces interleukin-10-producing regulatory T cells that enhance microglial phagocytic activity and reduce chronic inflammation, potentially aiding brain repair.