Toggle light / dark theme

New research has found that blind individuals tend to have better interoceptive abilities than sighted individuals, particularly when it comes to detecting signals related to the heart. The new findings have been published in the Journal of Experimental Psychology: General.

The study aimed to investigate how blindness affects interoception, which refers to the ability to perceive internal bodily sensations. The researchers were specifically interested in examining how blindness affects cardiac interoception, which involves perceiving the sensations of the heartbeat.

The study was motivated by previous research that has shown that blindness can lead to heightened crossmodal plasticity, which is the ability of the brain to reorganize and compensate for sensory deprivation by enhancing other senses.

The early detection and treatment of dementia such as Alzheimer’s is still one of the great challenges of modern medicine. It is already known that certain proteins in the cerebrospinal fluid can be used to diagnose Alzheimer’s disease. However, the current detection methods for such biomarkers by means of biochemical tests can only confirm and quantify the presence of such pathological proteins. No conclusions can be drawn about their original morphology of the proteins using biochemical assays, which holds information on disease stages.

However, such information if obtained directly in a label-free manner could allow conclusions to be drawn about the stage of the disease and evaluate the efficiency of a prescribed treatment. A team from the Transport at Nanoscale Interfaces Laboratory at Empa and the Department of Neurology at the Cantonal Hospital in St. Gallen has now used (AFM) to visualize the proteins that are indicative of Alzheimer’s disease under conditions that are as close to reality as possible. The researchers recently published their results in the journal Communications Biology.

With the new study, the researchers add another piece of the puzzle to their insights into Alzheimer’s development and diagnosis.

Researchers from Uppsala University have developed a method that helps immune cells exit from blood vessels into a tumor to kill cancer cells. The goal is to improve treatment of aggressive brain tumors. The study has been published in the journal Cancer Cell.

Glioblastoma is an aggressive brain tumor that lacks efficient treatment. This is in part due to the ability of the tumor to suppress or evade the body’s natural anti-cancer immune response. Immunotherapy, using checkpoint inhibitors, can reactivate the immune system against cancer. However, for this type of treatment to be effective, specific known as killer T cells must be present within the tumor.

Unfortunately, in brain cancer are dysfunctional and act as a barrier, preventing killer T cells from reaching the tumor. As a result, this form of immunotherapy, which is effective against many forms of cancer, is ineffective against brain cancers.

The brain is assumed to be hypoactive during cardiac arrest. However, animal models of cardiac and respiratory arrest demonstrate a surge of gamma oscillations and functional connectivity. To investigate whether these preclinical findings translate to humans, we analyzed electroencephalogram and electrocardiogram signals in four comatose dying patients before and after the withdrawal of ventilatory support. Two of the four patients exhibited a rapid and marked surge of gamma power, surge of cross-frequency coupling of gamma waves with slower oscillations, and increased interhemispheric functional and directed connectivity in gamma bands. High-frequency oscillations paralleled the activation of beta/gamma cross-frequency coupling within the somatosensory cortices. Importantly, both patients displayed surges of functional and directed connectivity at multiple frequency bands within the posterior cortical “hot zone,” a region postulated to be critical for conscious processing. This gamma activity was stimulated by global hypoxia and surged further as cardiac conditions deteriorated in the dying patients. These data demonstrate that the surge of gamma power and connectivity observed in animal models of cardiac arrest can be observed in select patients during the process of dying.

Year 2020 😗😁


Schizophrenia is one of the top 25 causes of global diseases burdens in terms of years lived with the disease and the emotional and economical strains it imposes on the society. Several strategies have been used to treat the patients, specially using typical and atypical psychoactives. However, due to its multifactorial characteristic and patient resistance, schizophrenia is still a difficult disease to diagnose and treat. Thus, new strategies for diagnostics and treatment must be researched to optimize the efficacy and reduce the side effects of the actual therapy. Nanomedicine tries to improve low-weight molecular agents for treatment of diseases through the use of nanoscaled carriers. Among nanomedicine, nanopsychiatry specifically deals with the potential role of nanotechnology in solving psychiatry diseases problems. Therefore, the objective of this work is to provide an overview of the state of the art of nanopsychiatry in the sense of treating schizophrenia.

Summary: Researchers proposed the need for a legal framework to guide the conversation on whether or not human brain organoids can be considered people.

Brain organoids are grown from stem cells in a lab, mimicking the growth and structure of real brains. However, they do not fulfill the requirements to be considered natural persons, according to the researchers.

The study explores the potential juridical personhood of human brain organoids, and whether they can be considered legal entities.

Summary: Researchers have identified spatial and temporal abnormalities in spontaneous fixational saccades as a potential biomarker for cognitive and positive symptoms in schizophrenia. Researchers combined patient data of fixational eye movement recorded over 60 seconds with machine learning technology, which was able to determine schizophrenia with 85% accuracy. This discovery suggests that fixational saccades could serve as an easily obtainable complementary diagnostic tool for the condition.

Source: Chinese Academy of Science.

In a study published online in the Schizophrenia Bulletin, researchers from Dr. Wang Wei’s lab at the Center for Excellence in Brain Science and Intelligence Technology of the Chinese Academy of Sciences, and Dr. Wang Jijun’ team at Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, demonstrated spatial and temporal abnormalities of spontaneous fixational saccades and their correlates with positive and cognitive symptoms in schizophrenia, suggesting that fixational saccades are a promising and easily obtainable biomarker for cognitive and positive symptoms and for complementary diagnosis in schizophrenia.

Discover the fascinating world of digital immortality and the pivotal role artificial intelligence plays in bringing this concept to life. In this captivating video, we delve into the intriguing idea of preserving our consciousness, memories, and personalities in a digital realm, potentially allowing us to live forever in a virtual environment. Unravel the cutting-edge AI technologies like mind uploading, AI-powered avatars, and advanced brain-computer interfaces that are pushing the boundaries of what it means to be alive.

Join us as we explore the ethical considerations, current progress, and future prospects of digital immortality. Learn about the ongoing advancements in brain-computer interfaces such as Neuralink, AI-powered virtual assistants like ChatGPT, and the challenges and opportunities that lie ahead. Will digital immortality redefine humanity’s relationship with life, death, and existence itself? Watch now to uncover the possibilities.

Keywords: digital immortality, artificial intelligence, mind uploading, AI-powered avatars, brain-computer interfaces, Neuralink, ChatGPT, virtual afterlife, eternal life, neuroscience, ethics, virtual reality, consciousness, future of humanity.

The development demonstrates that China is allegedly at the forefront of the “white-hot technology war between China and the US,” claims Chinese state-run media.

This development encourages the application of brain science research and demonstrates that China is allegedly at the forefront of the “white-hot technology war between China and the US,” according to Chinese state-run media reports on Friday evening.


Chinese researchers claim to have successfully conducted the “world’s first” brain-computer interface (BCI) experiment on a monkey, showcasing China’s BCI technological breakthrough.

“The success of the first animal trial is a breakthrough from zero to one, but getting the success to the clinic is a process from 1 to 100, so we still have a long way to go,” said Ma Yongjie, a neurosurgeon at Beijing-based Xuanwu Hospital Capital Medical University.

I suspected both this and alzheimers are bacterial infections.


A common genus of microbe found in wet, boggy environments could play a key role in the development of Parkinson’s disease, by excreting compounds that trigger proteins inside brain cells to form toxic clumps.

The findings, made by a small team of researchers at the University of Helsinki and the University of Eastern Finland, build on the results of an earlier investigation showing that the severity of the neurodegenerative disorder in volunteers increased with concentrations of Desulfovibrio bacterial strains in their feces.

By now demonstrating a potential path from the presence of the bacteria in genetically edited worms to physical changes in the brain that coincide with Parkinson’s disease, the researchers hope to one day improve early diagnosis of the disease in humans, or even slow its progress.