Toggle light / dark theme

Cubosome-based method for loading mRNA into exosomes

Exosomes, naturally derived vesicles responsible for intercellular communication, are emerging as next-generation drug delivery systems capable of transporting therapeutics to specific cells. However, their tightly packed, cholesterol-rich membranes make it extremely difficult to encapsulate large molecules such as mRNA or proteins.

Conventional approaches have relied on techniques like electroporation or chemical treatment, which often damage both the drugs and exosomes, reduce delivery efficiency, and require complex purification steps—all of which pose significant barriers to commercialization.

The team utilized a lipid-based nanoparticle known as a “cubosome,” which mimics the fusion structure of cell membranes and naturally fuses with exosomes. By mixing cubosomes carrying mRNA with exosomes at room temperature for just 10 minutes, the researchers achieved efficient fusion and confirmed that the mRNA was successfully loaded into the exosomes. Analysis showed that over 98% of the mRNA was encapsulated, while the structural integrity and biological function of the exosomes were preserved.

Furthermore, the engineered exosomes demonstrated the ability to cross the blood-brain barrier, one of the most difficult hurdles in drug delivery. Notably, the team observed a “homing” effect, where exosomes return to the type of cell they originated from, enabling targeted drug delivery to diseased tissues.

New Brain Pathway Reveals Why the Same Touch Feels Different

Our brain doesn’t just feel, it decides how much to feel. Researchers discovered a feedback loop that adjusts how sensitive we are to touch, depending on context. This dynamic brain circuit could help explain sensory fluctuations and traits linked to autism.

The cerebral cortex handles incoming sensory input through an intricate web of neural connections. But how exactly does the brain fine-tune these signals to shape what we perceive? Researchers at the University of Geneva (UNIGE) have uncovered a mechanism where specific projections from the thalamus influence the excitability of certain neurons.

Their findings, published in Nature Communications.

Maternal microbes play a significant role in shaping early brain development, study suggests

Research from Michigan State University finds that microbes play an important role in shaping early brain development, specifically in a key brain region that controls stress, social behavior, and vital body functions.

The study, published in Hormones and Behavior, used a to highlight how natural microbial exposure not only impacts immediately after birth but may even begin influencing development while still in the womb. A mouse model was chosen because mice share significant biological and behavioral similarities with humans and there are no other alternatives to study the role of on brain development.

This work is of significance because modern obstetric practices, like peripartum and Cesarean delivery, disrupt maternal microbes. In the United States alone, 40% of women receive antibiotics around childbirth and one-third of all births occur via Cesarean section.

Scientists Say the Universe Might Be a HOAX — Here’s Why

Which leads us to a strange but necessary question:

If the universe is just structure — just syntax — then where’s the meaning?
Because that’s what we’ve been trying to find all along, isn’t it? Not just patterns. Not just formulas. But something is behind it. Something in it. A message. A cause. A reason why anything is the way it is. Something we could point to and say, “There — that’s what it’s all about.”

3:04 The Illusion of Physical Reality — Is Anything Really There?
10:16 Quantum Mechanics — When Reality Stops Making Sense.
18:04 The Holographic Principle — A Universe Made of Information.
26:24 Quantum Fields, Not Particles — The Fabric Beneath Matter.
33:29 Emergence — Time, Space, and Matter Are Not Fundamental.
41:49 Simulation Theory — But with a Physics Twist.
49:12 Quantum Gravity and the End of Local Reality.
57:29 Consciousness and the Collapse of Reality.
1:06:11 The “It from Bit” Hypothesis.
1:15:37 Experimental Clues — When the Universe Disobeys Logic.
1:23:46 If the Universe Isn’t Real, What Are We?
1:33:13 Could Physics Be Telling Us There’s No ‘There’ There?
1:39:33 Is the Universe a Language Without a Speaker?
1:46:53 So… What’s Left? Do We Actually Exist?
1:52:07 The Ultimate Twist — Could “Nothing” Be the Most Real Thing?
1:57:07 What If the Universe Is the Biggest Illusion Ever Constructed?

If you keep peeling everything back, does anything actually remain?
That’s the uncomfortable part. Because there’s a difference between saying “nothing exists the way we thought” and saying “nothing exists at all.” The first is about interpretation. The second is about presence. One reframes reality. The other questions whether there’s anything there to reframe.

Scientists discover brain layers that get stronger with age

Researchers have discovered that parts of the human brain age more slowly than previously thought—particularly in the region that processes touch. By using ultra-high-resolution brain scans, they found that while some layers of the cerebral cortex thin with age, others remain stable or even grow thicker, suggesting remarkable adaptability. This layered resilience could explain why certain skills endure into old age, while others fade, and even reveals built-in compensatory mechanisms that help preserve function.

Novel protein therapy shows promise as first-ever antidote for carbon monoxide poisoning

University of Maryland School of Medicine (UMSOM) researchers, along with their colleagues, engineered a new molecule that appears promising as an effective antidote for carbon monoxide poisoning with fewer side effects than other molecules currently being tested, according to a new study published in the journal PNAS.

Carbon monoxide poisoning accounts for 50,000 in the U.S. each year and causes about 1,500 deaths. These deaths may occur when released from combustion builds up in an enclosed space, which can result from ventilation failures in indoor natural gas burning equipment, or running gasoline generators or automobiles indoors or in a closed garage. Carbon monoxide poisoning is also associated with most fires from smoke inhalation.

Currently, the only treatments for carbon monoxide poisoning are oxygen-based therapies, which help the body eliminate the toxic gas. However, even with treatment, nearly half of survivors suffer long-term heart and brain damage. This has created an urgent need for faster, more effective therapies.

/* */