Toggle light / dark theme

“Microglia exhibit both maladaptive and adaptive roles in the pathogenesis of neurodegenerative diseases and have emerged as a therapeutic target for central nervous system (CNS) disorders, including those affecting the retina,” wrote the researchers. “Replacing maladaptive microglia, such as those impacted by aging or over-activation, with exogenous microglia that enable adaptive functions has been proposed as a potential therapeutic strategy for neurodegenerative diseases. To investigate the potential of microglial cell replacement as a strategy for retinal diseases, we first employed an efficient protocol to generate a significant quantity of human-induced pluripotent stem cells (hiPSC)-derived microglia.”

“Our understanding of microglia function comes predominantly from rodent studies due to the difficulty of sourcing human tissue and isolating the microglia from these tissues. But there are genetic and functional differences between microglia in mice and humans, so these studies may not accurately represent many human conditions,” explained lead author Wenxin Ma, a PhD, biologist at the Retinal Neurophysiology Section, National Eye Institute, National Institutes of Health.

“To address this concern, researchers have been growing human microglia from human stem cells. We wanted to take this a step further and see if we could transplant human microglia into the mouse retina, to serve as a platform for screening therapeutic drugs as well as explore the potential of microglia transplantation as a therapy itself,” added senior author Wai Wong, vice president of retinal disease, Janssen Research and Development.

Step forward platelet factor 4 (PF4): this substance in the blood has been linked to the mental boost we get from exercise, the benefits of blood transfusions, and a protein associated with longevity, in three separate studies.

All three processes promote cognitive enhancement, meaning PF4 is something of a superpowered blood factor. The research was carried out by two teams from the University of California San Francisco (UCSF) in the US and the University of Queensland in Australia.

Platelets are cell fragments that play a critical role in the clotting process. Aside from serving as physical plugs that staunch bleeding, these small, non-nucleated chunks of bone marrow cell contain granules that release chemicals to promote aggregation.

Researchers at The University of Queensland have found an anti-aging function in a protein deep within human cells.

Associate Professor Steven Zuryn and Dr. Michael Dai at the Queensland Brain Institute have discovered that a protein called ATSF-1 controls a fine balance between the creation of new mitochondria and the repair of damaged mitochondria.

Summary: Researchers uncovered how distinct neuron types in the Drosophila fruit fly differentiate their functions despite originating from a similar genetic framework.

In the study, two closely related neuronal subtypes expressed more than 800 different genes (~5% of the fly genome) differently. This gene expression directly influenced the observable distinctions between the neuron types.

The findings help illuminate the brain’s intricate cell development and how disease could affect it.

(NewsNation) — Eye scans could be able to detect Parkinson’s disease several years before the presentation of other symptoms, according to a new study.

The findings, published in the journal Neurology, add to growing evidence that eye scans could help detect neurodegenerative diseases including Alzheimer’s and multiple sclerosis.

Researchers at University College Hospital and the Moorfields Eye Hospital used a type of 3D scan known as optical coherence tomography (OCT) which detected Parkinson’s disease markers an average of seven years before clinical symptoms.