Toggle light / dark theme

In addition to lowering your cholesterol, keeping your brain healthy and improving mental health, new research from the University of Georgia suggests omega-3 and omega-6 fatty acids may help ward off a variety of cancers.

The study relied on data from more than 250,000 people and found that higher…


But most Americans probably aren’t eating enough of these foods to reach the recommended amounts.

That’s why many individuals turn to fish oil supplements. They’re one of the most popular dietary pills on the market and for good reason.

Previous studies suggest omega-3 supplements can reduce the risk of developing high cholesterol and lower the risk of heart disease.

The risk of getting dementia may go up as you get older if you don’t get enough slow-wave sleep. Over-60s are 27 percent more likely to develop dementia if they lose just 1 percent of this deep sleep each year, a 2023 study found.

Slow-wave sleep is the third stage of a human 90-minute sleep cycle, lasting about 20–40 minutes. It’s the most restful stage, where brain waves and heart rate slow and blood pressure drops.

Deep sleep strengthens our muscles, bones, and immune system, and prepares our brains to absorb more information. Recently, research discovered that individuals with Alzheimer’s-related changes in their brain did better on memory tests when they got more slow-wave sleep.

Using functional magnetic resonance imaging (fMRI) data, the research team identified 24 networks with different functions,…


MIT researchers created the most comprehensive map yet of the functions of the brain’s cerebral cortex. Using fMRI, the team identified 24 networks with different functions, which include processing language, social interactions, visual features, and other sensory input.

This development comes from…


Researchers have designed a high-speed 3D bioprinter to accurately print human tissues.

Interestingly, this advanced bioprinter is capable of fabricating a diverse array of tissues, including both soft brain tissue and harder materials such as cartilage and bone.

This development comes from biomedical engineers from the University of Melbourne.

MIT researchers have developed a battery-free, subcellular-sized device made of polymer designed to measure and modulate a neuron’s electrical and metabolic activity. When the device is activated by light, it can gently wrap around the neuron cell’s axons and dendrites without damaging the cells.

Scientists want to inject thousands of these tiny wireless devices into a patient’s central nervous system and then actuate them noninvasively using light. The light would penetrate the tissue and allow precise control of the devices, and thereby restore function in cases of neuronal degradation like multiple sclerosis (MS).

The MIT researchers developed these thin-film devices from a azobenzene, a soft polymer that readily reacts to light. Thin sheets of azobenzene roll into a cylinder when exposed to light, which enables them to wrap around cells. Researchers can control the direction and diameter of the rolling by changing the intensity and polarization of the light, producing a microtube with a diameter smaller than one micrometer.

Ionut Constantinescu, Tiago Pimentel, Ryan Cotterell, Alex Warstadt ETH Zurich 2024 https://arxiv.org/abs/2407.

Children are better at learning a…


We’ve detected that JavaScript is disabled in this browser. Please enable JavaScript or switch to a supported browser to continue using x.com. You can see a list of supported browsers in our Help Center.

Help Center

Terms of Service Privacy Policy Cookie Policy Imprint Ads info © 2024 X Corp.

The intricate relationship between hydrogen sulfide (H2S), gut microbiota, and sirtuins (SIRTs) can be seen as a paradigm axis in maintaining cellular homeostasis, modulating oxidative stress, and promoting mitochondrial health, which together play a pivotal role in aging and neurodegenerative diseases. H2S, a gasotransmitter synthesized endogenously and by specific gut microbiota, acts as a potent modulator of mitochondrial function and oxidative stress, protecting against cellular damage. Through sulfate-reducing bacteria, gut microbiota influences systemic H2S levels, creating a link between gut health and metabolic processes. Dysbiosis, or an imbalance in microbial populations, can alter H2S production, impair mitochondrial function, increase oxidative stress, and heighten inflammation, all contributing factors in neurodegenerative diseases such as Alzheimer’s and Parkinson’s.