Toggle light / dark theme

Researchers at Carnegie Mellon University are building an AI platform that will “whisper” instructions in your ear to provide cognitive assistance. Named after Gabriel, the biblical messenger of God, the whispering robo-assistant can already guide you through the process of building a basic Lego object. But, the ultimate goal is to provide wearable cognitive assistance to millions of people who live with Alzheimer’s, brain injuries or other neurodegenerative conditions. For instance, if a patient forgets the name of a relative, Gabriel could whisper the name in their ear. It could also be programmed to help patients through everyday tasks that will decrease their dependence on caregivers.

For the software to exist as a working wearable assistant, it will need a head-mounted device to latch onto. For now, the team is using Google Glass for demos like a ping pong assistant, where the programs tells the user to hit the ball to the right or left depending on the position of the ball in relation to the opponent. In the video below, when the user follows the guidance it makes it harder for the opponent to defend the ball in the game.

Read more

Tufts biologists induced one species of flatworm —- G. dorotocephala, top left — to grow heads and brains characteristic of other species of flatworm, top row, without altering genomic sequence. Examples of the outcomes can be seen in the bottom row of the image. (credit: Center for Regenerative and Developmental Biology, School of Arts and Sciences, Tufts University.)

Tufts University biologists have electrically modified flatworms to grow heads and brains characteristic of another species of flatworm — without altering their genomic sequence. This suggests bioelectrical networks as a new kind of epigenetics (information existing outside of a genomic sequence) to determine large-scale anatomy.

Besides the overall shape of the head, the changes included the shape of the brain and the distribution of the worm’s adult stem cells.

Read more

The world’s first anti-ageing drug will be tested on humans next year in trials which could see diseases like Alzheimer’s and Parkinson’s consigned to distant memory.

Scientists now believe that it is possible to actually stop people growing old as quickly and help them live in good health well into their 110s and 120s.

Although it might seem like science fiction, researchers have already proven that the diabetes drug metformin extends the life of animals, and the Food and Drug Administration in the US has now given the go ahead for a trial to see if the same effects can be replicated in humans.

Read more

The results are mixed, of course, but it’s fascinating to watch the neural network make mistakes (and sometimes correct itself) in real time. The open source program being used is called NeuralTalk and was first unveiled last year, with the researchers providing updates on the network’s capabilities since. Other companies and institutions are working on similar technology. Last month, for example, Facebook unveiled a prototype neural network that’s intended to help blind people by describing pictures.

Read more

20151120-go-board-game-google-ai

“When the world’s smartest researchers train computers to become smarter, they like to use games. Go, the two-player board game born in China more than two millennia ago, remains the nut that machines still can’t crack.”

Read more

Interesting…


To suggest that quantum mechanics and gravity are on the verge of being reconciled would be, to the physics world at least, as significant as the discover of splitting the atom. While splitting the atom might have led to the nuclear bomb, it also led to the technology of nuclear power, i.e. nuclear fission, which, if harnessed properly, creates a renewable and sustainable energy resource. The problem has always been that quantum mechanics — the rules that govern sub-atomic particles — and gravity, the rule that governs mass as we know it (the stuff we can touch and feel), do not agree with each other. The question has always been, what is it that “unifies” these two theories? Is quantum mechanics God playing dice, as Einstein suggested?

“God doesn’t play dice with the universe.”

Stephen Hawking and his colleagues have come to a possible answer. Think of your television. You watch shows and movies and you are not thinking how unrealistic the movie is because it is on your two dimensional screen. The two dimensions represent information which is perceived by your brain as an accurate portrayal of the three dimensional universe. In short, the three dimensional universe is captured in two dimensions; reality becomes a hologram. Out reality could be nothing more than a television show if we extend Hawking’s Theory to the entire universe.

A few weeks ago, I wrote about Ray Kurzweil’s wild prediction that in the 2030s, nanobots will connect our brains to the cloud, merging biology with the digital world.

Let’s talk about what’s happening today.

Over the past few decades, billions of dollars have been poured into three areas of research: neuroprosthetics, brain-computer interfaces and optogenetics.

Read more

Researchers at the Salk Institute working on an experimental Alzheimer’s drug have discovered it may have a host of anti-aging effects too.

Building on previous work

Research had already been conducted on the drug candidate, J147, with the aim of targeting Alzheimer’s. The results showed the drug could help prevent and even regenerate; reversing memory loss and a form of inherited Alzheimer’s disease in mice subjects. While this form comprises only 1% of Alzheimer’s cases, the biggest risk factor for the remainder is old age. If you could target brain aging itself, risk factors would be significantly reduced.

Read more

It may hurt your brain to think about it, but it appears that the answer is possibly to be yes, or at least the numbers are almost in the same ballpark.

Astrophysicists in fact set out to answer this question about a decade ago. It’s a complicated problem to solve, but it’s somewhat easier if you throw in a couple of qualifiers — that we are talking about stars in the observable universe; and grains of sand on the whole planet, not just the seashores.

The researchers started by calculating the luminosity density of a section of the cosmos — this is a calculation of how much light is in that space. They then utilized this calculation to guess the number of stars needed to make that amount of light. This was quite a mathematical challenge!

“You have to suppose that you can have one type of star signify all types of stars,” says astrophysicist Simon Driver, Professor at the International Centre for Radio Astronomy Research in Western Australia and one of the researchers who worked on the question.

“Then let’s suppose, on average, this is a normal mass star that gives out the normal amount of light, so if I know that a part of the universe is producing this amount of light, I can now say how many stars that would associate to.”