Menu

Blog

Archive for the ‘nanotechnology’ category: Page 81

Jan 21, 2023

In the core of the cell: New insights into the utilization of nanotechnology-based drugs

Posted by in categories: biotech/medical, chemistry, nanotechnology

Novel drugs, such as vaccines against COVID-19, among others, are based on drug transport using nanoparticles. Whether this drug transport is negatively influenced by an accumulation of blood proteins on the nanoparticle’s surface was not clarified for a long time.

Scientists at the Max Planck Institute for Polymer Research have now followed the path of such a particle into a cell using a combination of several microscopy methods. They were able to observe a cell-internal process that effectively separates blood components and .

Nanoparticles are a current field of research and it is impossible to imagine without them. They serve as microscopic drug capsules that are less than a thousandth of a millimeter in diameter. Among other things, they are used in current vaccines against COVID-19 to effectively deliver active ingredients to where they are actually needed. In most cases, the capsules dock onto cells, are enveloped by them, and are absorbed into them. Inside the cell, can then open the capsules, releasing the active ingredient.

Jan 20, 2023

Photonic hopfions: Light shaped as a smoke ring that behaves like a particle

Posted by in categories: climatology, mathematics, nanotechnology, particle physics, quantum physics

We can frequently find in our daily lives a localized wave structure that maintains its shape upon propagation—picture a smoke ring flying in the air. Similar stable structures have been studied in various research fields and can be found in magnets, nuclear systems, and particle physics. In contrast to a ring of smoke, they can be made resilient to perturbations. This is known in mathematics and physics as topological protection.

A typical example is the nanoscale hurricane-like texture of a magnetic field in magnetic thin films, behaving as particles—that is, not changing their shape—called skyrmions. Similar doughnut-shaped (or toroidal) patterns in 3D space, visualizing complex spatial distributions of various properties of a wave, are called hopfions. Achieving such structures with is very elusive.

Recent studies of structured light revealed strong spatial variations of polarization, phase, and amplitude, which enable the understanding of—and open up opportunities for designing—topologically stable optical structures behaving like particles. Such quasiparticles of light with control of diversified topological properties may have great potential, for example as next-generation information carriers for ultra-large-capacity optical information transfer, as well as in quantum technologies.

Jan 20, 2023

Shocking!! New Nanomaterial Produces Hydrogen Through Light!!

Posted by in categories: innovation, nanotechnology

Don´t forget to leave your comments below and to support the channel by liking the video and subscribing. Thanks!

Subscribe To The Tesla Domain ➡ https://bit.ly/2ECNiWk.

Continue reading “Shocking!! New Nanomaterial Produces Hydrogen Through Light!!” »

Jan 20, 2023

New Nanoparticles Deliver Therapy Brain-Wide and Edit Alzheimer’s Gene

Posted by in categories: bioengineering, biotech/medical, nanotechnology, neuroscience

Summary: Researchers have developed a new family of nano-scale capsules capable of carrying CRISPR gene editing tools to different organs of the body before harmlessly dissolving. The capsules were able to enter the brains of mice and successfully edit a gene associated with Alzheimer’s disease.

Source: University of Wisconsin-Madison.

Gene therapies have the potential to treat neurological disorders like Alzheimer’s and Parkinson’s diseases, but they face a common barrier — the blood-brain barrier.

Jan 19, 2023

New nanoparticles deliver therapy throughout the brain and edit Alzheimer’s gene in mice

Posted by in categories: biotech/medical, engineering, genetics, nanotechnology, neuroscience, security

Gene therapies have the potential to treat neurological disorders like Alzheimer’s and Parkinson’s diseases, but they face a common barrier—the blood-brain barrier. Now, researchers at the University of Wisconsin-Madison have developed a way to move therapies across the brain’s protective membrane to deliver brain-wide therapy with a range of biological medications and treatments.

“There is no cure yet for many devastating disorders,” says Shaoqin “Sarah” Gong, UW-Madison professor of ophthalmology and visual sciences and biomedical engineering and researcher at the Wisconsin Institute for Discovery. “Innovative brain-targeted delivery strategies may change that by enabling noninvasive, safe and efficient delivery of CRISPR genome editors that could, in turn, lead to genome-editing therapies for these diseases.”

CRISPR is a molecular toolkit for editing (for example, to correct mutations that may cause disease), but the toolkit is only useful if it can get through security to the job site. The is a membrane that selectively controls access to the brain, screening out toxins and pathogens that may be present in the bloodstream. Unfortunately, the bars some beneficial treatments, like certain vaccines and gene therapy packages, from reaching their targets because in lumps them in with hostile invaders.

Jan 19, 2023

New ‘chain mail’ material of interlocking molecules is tough, flexible and easy to make

Posted by in categories: chemistry, nanotechnology

University of California, Berkeley, chemists have created a new type of material from millions of identical, interlocking molecules, that for the first time allows the synthesis of extensive 2D or 3D structures that are flexible, strong and resilient, like the chain mail that protected medieval knights.

The material, called an infinite catenane, can be synthesized in a single chemical step.

Continue reading “New ‘chain mail’ material of interlocking molecules is tough, flexible and easy to make” »

Jan 18, 2023

Nanoparticles make it easier to turn light into solvated electrons

Posted by in categories: chemistry, nanotechnology

There are many ways to initiate chemical reactions in liquids, but placing free electrons directly into water, ammonia and other liquid solutions is especially attractive for green chemistry because solvated electrons are inherently clean, leaving behind no side products after they react.

In theory, solvated electrons could be used to safely and sustainably break down carbon dioxide or chemical pollutants in contaminated water, but it has been impractical to find out because they’ve been difficult and expensive to make in pure form.

That could change thanks to new research from chemists at Rice University, Stanford University and the University of Texas at Austin. In a published study in the Proceedings of the National Academy of Sciences, researchers from the Center for Adapting Flaws into Features (CAFF) uncovered the long-sought mechanism of a well-known but poorly understood process that produces solvated electrons via interactions between light and metal.

Jan 17, 2023

RNA lipid nanoparticle engineering stops liver fibrosis in its tracks, reverses damage

Posted by in categories: bioengineering, biotech/medical, genetics, nanotechnology

Since the success of the COVID-19 vaccine, RNA therapies have been the object of increasing interest in the biotech world. These therapies work with your body to target the genetic root of diseases and infections, a promising alternative treatment method to that of traditional pharmaceutical drugs.

Lipid nanoparticles (LNPs) have been successfully used in for decades. FDA-approved therapies use them as vehicles for delivering messenger RNA (mRNA), which prompts the cell to make new proteins, and small interfering RNA (siRNA), which instruct the cell to silence or inhibit the expression of certain proteins.

The biggest challenge in developing a successful RNA therapy is its targeted delivery. Research is now confronting the current limitations of LNPs, which have left many diseases without an effective RNA therapy.

Jan 17, 2023

New method for designing tiny 3D materials could make fuel cells more efficient

Posted by in categories: chemistry, energy, nanotechnology, sustainability

Scientists from UNSW Sydney have demonstrated a novel technique for creating tiny 3D materials that could eventually make fuel cells like hydrogen batteries cheaper and more sustainable.

In the study published in Science Advances, researchers from the School of Chemistry at UNSW Science show it’s possible to sequentially “grow” interconnected in 3D at the nanoscale which have unique chemical and to support energy conversion reactions.

In chemistry, hierarchical structures are configurations of units like molecules within an organization of other units that themselves may be ordered. Similar phenomena can be seen in the , like in flower petals and tree branches. But where these structures have extraordinary potential is at a level beyond the visibility of the human eye—at the nanoscale.

Jan 17, 2023

Associate or Senior Editor, Nature Nanotechnology

Posted by in categories: engineering, nanotechnology

@NatureNano is hiring!

If you are an expert in 2D materials, electronics, optoelectronics, nanophotonics, or electronic engineering and interested in a career in science publishing?

Apply by Jan 22nd 2023 and join the editorial team.

Continue reading “Associate or Senior Editor, Nature Nanotechnology” »

Page 81 of 289First7879808182838485Last