Menu

Blog

Archive for the ‘nanotechnology’ category: Page 79

Feb 20, 2023

‘Flash Joule’ technique efficiently turns would-be pollution into valuable nanomaterials

Posted by in categories: economics, nanotechnology, sustainability

Putting that soda bottle or takeout container into the recycling bin is far from a guarantee it will be turned into something new. Scientists at Rice University are trying to address this problem by making the process profitable.

The amount of waste produced globally has doubled over the past two decades—and plastic production is expected to triple by 2050—with most of it ending up in landfills, incinerated or otherwise mismanaged, according to the Organization for Economic Cooperation and Development. Some estimates suggest only 5% is actually being recycled.

“Waste plastic is rarely recycled because it costs a lot of money to do all the washing, sorting and melting down of the plastics to turn it into a material that can be used by a factory,” said Kevin Wyss, a Rice graduate student and lead author on a study published in Advanced Materials that describes how he and colleagues in the lab of chemist James Tour used their flash Joule heating technique to turn plastic into valuable carbon nanotubes and hybrid nanomaterials.

Feb 20, 2023

Neuromorphic semiconductor device achieves world’s highest handwriting pattern recognition rate

Posted by in categories: nanotechnology, robotics/AI

A research team led by Dr. Yong-hun Kim and Dr. Jeong-Dae Kwon has successfully developed the world’s first neuromorphic semiconductor device with high-density and high-reliability by developing a thin film of lithium-ion battery materials. They achieved this by producing ultra-thin lithium ions, a key material of lithium-ion batteries that have been in the spotlight recently, and combining it with two-dimensional nano-materials. The research team is from the Surface & Nano Materials Division at the Korea Institute of Materials Science (KIMS).

A neuromorphic device has synapses and neurons similar to the , which processes and memorizes information. The synaptic device receives signals from neurons and modulates the synaptic weight (connection strength) in various ways to simultaneously process and store information. In particular, the linearity and symmetry of synaptic weights enables various pattern recognition with low power.

Traditional methods for controlling synaptic weights use charge traps between interfaces of heterogeneous materials or oxygen ions. In this case, however, it is difficult to control the movement of ions in the desired direction according to the external electric field. The researchers solved this problem with an artificial intelligence semiconductor device with high density by developing a thin film process while maintaining the mobility of lithium ions according to the external electric field. The thin film—with a thickness of several tens of nanometers—enables fine pattern processing while controlling the thickness of the wafer scale.

Feb 19, 2023

Secret of Flow-Induced Electric Currents Revealed

Posted by in categories: materials, nanotechnology

Vibrations are the main drivers of a mysterious process in which a liquid flow generates an electric current in the solid below it.

Liquid flowing over a conducting surface is known to produce electric currents, but the mechanism behind this effect has been unclear. New experiments with a single liquid drop dragged over a graphene surface demonstrate that viscous forces at the liquid–solid interface create vibrations, or phonons, in the graphene sheet that drag electrons in the direction of the flow [1]. The researchers verified this “phonon wind” interpretation by observing multiple liquids and by testing graphene surfaces with and without wrinkles. The results could lead to highly sensitive flow sensors or to devices that can harvest electricity from flows.

Researchers have found that water flowing over a material—in particular, carbon nanotubes or graphene—can generate electric currents in the solid. The effect appears in carbon materials because the surfaces are atomically flat and thus allow the liquid to flow largely unobstructed at the liquid–solid boundary, explains Alessandro Siria from the École Normale Supérieure in France. Several models have been proposed to explain the flow-induced currents, often involving charges within the liquid acting on the electrons in the solid. However, experimental uncertainties have prevented researchers from determining which model is best.

Feb 19, 2023

Researchers develop greener alternative to fossil fuels

Posted by in categories: economics, nanotechnology, particle physics, solar power, sustainability

Researchers at the University of North Carolina at Chapel Hill Department of Chemistry have engineered silicon nanowires that can convert sunlight into electricity by splitting water into oxygen and hydrogen gas, a greener alternative to fossil fuels.

Fifty years ago, scientists first demonstrated that liquid water can be split into oxygen and using electricity produced by illuminating a semiconductor electrode. Although hydrogen generated using is a promising form of clean energy, low efficiencies and have hindered the introduction of commercial solar-powered hydrogen plants.

An economic feasibility analysis suggests that using a slurry of electrodes made from nanoparticles instead of a rigid solar panel design could substantially lower costs, making solar-produced hydrogen competitive with fossil fuels. However, most existing particle-based light-activated catalysts, also referred to as photocatalysts, can absorb only , limiting their energy-conversion efficiency under solar illumination.

Feb 18, 2023

Making nanoparticle building blocks for new materials

Posted by in categories: materials, nanotechnology

Some researchers are driven by the quest to improve a specific product, like a battery or a semiconductor. Others are motivated by tackling questions faced by a given industry. Rob Macfarlane, MIT’s Paul M. Cook Associate Professor in Materials Science and Engineering, is driven by a more fundamental desire.

“I like to make things,” Macfarlane says. “I want to make materials that can be functional and useful, and I want to do so by figuring out the basic principles that go into making new structures at many different size ranges.” (Image: Adam Glanzman)

Feb 17, 2023

Chromo-encryption method uses color to encode information

Posted by in categories: encryption, nanotechnology, security

In a new approach to security that unites technology and art, EPFL researchers have combined silver nanostructures with polarized light to yield a range of brilliant colors, which can be used to encode messages.

Cryptography is something of a new field for Olivier Martin, who has been studying the optics of nanostructures for many years as head of the Nanophotonics and Metrology Lab EPFL’s School of Engineering. But after developing some new silver nanostructures in collaboration with the Center of MicroNanoTechnology, Martin and Ph.D. student Hsiang-Chu Wang noticed that these nanostructures reacted to in an unexpected way, which just happened to be perfect for encoding information.

They found that when polarized light was shone through the nanostructures from certain directions, a range of vivid and easily-identifiable colors was reflected back. These different colors could be assigned numbers, which could then be used to represent letters using the standard code ASCII (American Standard Code for Information Interchange). To encode a secret message, the researchers applied a quaternary code using the digits 0, 1, 2 and 3 (as opposed to the more commonly used 0 and 1). The result was a series of four-digit strings composed of different color combinations that could be used to spell out a message, and the method of chromo-encryption was born.

Feb 17, 2023

Learning about Neuralink w/ James Douma (ChatGPT x Neuralink)

Posted by in categories: biotech/medical, existential risks, nanotechnology, robotics/AI

00:00 Intro.
01:01 ChatGPT x Neuralink.
16:45 Inserting stents into blood vessels.
26:48 Pros & Cons of Neuralink’s architecture.
31:55 Neuralink clinics.
33:51 Downloading our minds onto a Tesla Optimus Bot.
52:30 If you get a Neuralink, will you lose free will?
1:04:16 AI helping Neuralink.
1:09:55 Everyone’s brain is unique.
1:23:16 Getting a Neuralink as a baby.
1:25:20 Sleep paralysis.
1:30:01 Nanotechnology x Neuralink.
1:31:59 James has an idea for Neuralink.
1:46:22 James’ favorite answer to the Fermi Paradox.
1:55:08 Haha smile

Neura Pod is a series covering topics related to Neuralink, Inc. Topics such as brain-machine interfaces, brain injuries, and artificial intelligence will be explored. Host Ryan Tanaka synthesizes informationopinions, and conducts interviews to easily learn about Neuralink and its future.

Continue reading “Learning about Neuralink w/ James Douma (ChatGPT x Neuralink)” »

Feb 16, 2023

Scientists are making machines, wearable and implantable, to act as kidneys

Posted by in categories: biotech/medical, chemistry, nanotechnology, wearables

“It doesn’t have just a static function. It has a bank of sensors that measure chemicals in the blood and feeds that information back to the device,” Kurtz says.

Other startups are getting in on the game. Nephria Bio, a spinout from the South Korean-based EOFlow, is working to develop a wearable dialysis device, akin to an insulin pump, that uses miniature cartridges with nanomaterial filters to clean blood (Harhay is a scientific advisor to Nephria). Ian Welsford, Nephria’s co-founder and CTO, says that the device’s design means that it can also be used to treat acute kidney injuries in resource-limited settings. These potentials have garnered interest and investment in artificial kidneys from the U.S. Department of Defense.

For his part, Burton is most interested in an implantable device, as that would give him the most freedom. Even having a regular outpatient procedure to change batteries or filters would be a minor inconvenience to him.

Feb 16, 2023

Nanotech Away Missions: Picogram-scale Probes To Explore Nearby Stars

Posted by in categories: alien life, nanotechnology

In a forward-looking article, George Church, PhD, from Harvard University and the Wyss Institute, proposes the use of picogram to nanogram-scale probes that can land, replicate, and produce a communications module at the destination to explore nearby stars.

The fascinating new article is published in a special issue on “Interstellar Objects in Astrobiology” of the peer-reviewed journal Astrobiology.

“One design is a highly reflective light sail, traveling a long straight line toward the gravitational well of a destination star, and the photo-deflected to the closest non-luminous mass – ideally a planet or moon with exposed liquid water,” states Dr. Church.

Feb 16, 2023

Model Shows How Intelligent-like Behavior Can Emerge From Non-living Agents

Posted by in categories: biotech/medical, chemistry, engineering, mathematics, nanotechnology

It acted with rudimentary intelligence, learning, evolving and communicating with itself to grow more powerful.

A new model by a team of researchers led by Penn State and inspired by Crichton’s novel describes how biological or technical systems form complex structures equipped with signal-processing capabilities that allow the systems to respond to stimulus and perform functional tasks without external guidance.

“Basically, these little nanobots become self-organized and self-aware,” said Igor Aronson, Huck Chair Professor of Biomedical Engineering, Chemistry, and Mathematics at Penn State, explaining the plot of Crichton’s book. The novel inspired Aronson to study the emergence of collective motion among interacting, self-propelled agents. The research was recently published in Nature Communications.

Page 79 of 291First7677787980818283Last