Menu

Blog

Archive for the ‘nanotechnology’ category: Page 206

Mar 20, 2019

One transistor for all purposes

Posted by in categories: computing, economics, nanotechnology, physics

In mobiles, fridges, planes – transistors are everywhere. But they often operate only within a restricted current range. LMU physicists have now developed an organic transistor that functions perfectly under both low and high currents.

Transistors are that control voltage and currents in electrical circuits. To reduce economic and , must become smaller and more effective. This applies above all to transistors. In the field of inorganic semiconductors, dimensions below 100 nanometers are already standard. In this respect, organic semiconductors have not been able to keep up. In addition, their performance with regard to charge-carrier transport is considerably worse. But organic structures offer other advantages. They can easily be printed on an , the material costs are lower, and they can be transparently applied to flexible surfaces.

Thomas Weitz, a professor in LMU’s Faculty of Physics and a member of the Nanosystems Initiative Munich, and his team are working intensively on the optimization of organic transistors. In their latest publication in Nature Nanotechnology, they describe the fabrication of transistors with an unusual structure, which are tiny, powerful and above all versatile. By carefully tailoring a small set of parameters during the , they have been able to design nanoscale devices for high or low current densities. The primary innovation lies in the use of an atypical geometry, which also facilitates assembly of the nanoscopic transistors.

Read more

Mar 19, 2019

A Real World ‘Star Trek’ Replicator Is Now Possible Thanks To New Breakthrough

Posted by in categories: 3D printing, energy, nanotechnology

A startup with alumni from MIT and Yale says it’s made a breakthrough in creating a next-generation material that should make it possible to 3D print literally anything out of thin air.

New York-based Mattershift has managed to create large-scale carbon nanotube (CNT) membranes that are able to combine and separate individual molecules.

“This technology gives us a level of control over the material world that we’ve never had before,” said Mattershift Founder and CEO Dr. Rob McGinnis in a release. “For example, right now we’re working to remove CO2 from the air and turn it into fuels. This has already been done using conventional technology, but it’s been too expensive to be practical. Using our tech, I think we’ll be able to produce carbon-zero gasoline, diesel, and jet fuels that are cheaper than fossil fuels.”

Continue reading “A Real World ‘Star Trek’ Replicator Is Now Possible Thanks To New Breakthrough” »

Mar 16, 2019

Scientists Thread A Nano-Needle To Modify The Genes Of Plants

Posted by in categories: biotech/medical, genetics, nanotechnology

Carbon Nanotubes May Be An Easy Way To Tinker With Plant Genetics Getting DNA into plant cells is tricky. Researchers have tried using infectious bacteria, as well as gene guns that shoot gold bullets. Then a physicist came up with a new approach almost by accident.

Read more

Mar 14, 2019

Magnetic nano-probe explores individual cells from the inside

Posted by in categories: biotech/medical, nanotechnology, robotics/AI

There’s a good chance that in the future, microscopic robots could be swimming and crawling their way through our bodies to deliver drugs or fight infections. While some of these have been capable of manipulating individual cells, researchers at the University of Toronto have developed a new way to get nano-scale probes inside cells, and precisely control them once they’re in there.

Read more

Mar 12, 2019

Semiconductor-coated nanoparticles kill bacteria, cancer cells

Posted by in categories: biotech/medical, nanotechnology

Nature India: All about science in India.

Read more

Mar 8, 2019

These injectable nanobots can walk around inside a human body

Posted by in categories: biotech/medical, nanotechnology, robotics/AI

Researchers have developed nanobots that can be injected using an ordinary hypodermic syringe, according to a new release. The nanobots are microscopic functioning robots with the ability to walk and withstand harsh environments. Each robot has a 70-micron length, which is about the width of a thin human hair, and a million can be produced from a single 4-inch silicon composite wafer.

Read more

Mar 6, 2019

Graphene Shows Promise for Repairing Broken Bones

Posted by in categories: biotech/medical, nanotechnology

When you were a kid, did you ever sign a classmate’s cast after they broke an arm or a leg? Your name would be on display there for the rest of the semester. Broken bones are one of the worst trade-offs in childhood—a few seconds of calamity followed by months of boring rest and recovery. But children in the future may have a different story to tell as emerging tech overhauls how we fix broken bones.

Carbon nanomaterials may have the power to heal bones faster than a Harry Potter fan can say ‘Brackium Emendo!’ Researchers from Stefanie A. Sydlik’s team at Carnegie Mellon University have tested a new formulation of graphene that is biodegradable, mimics bone, attracts stem cells, and ultimately improves how animals can repair damage to their skeletons.

As reported in PNAS, this phosphate graphene serves as a scaffold, allowing the body’s own cells to more rapidly reform the missing or damaged bone. The technique has already shown success in mice. As this technology matures it could become a vital part of orthopedic medicine, helping us recover faster with stronger, healthier bones.

Continue reading “Graphene Shows Promise for Repairing Broken Bones” »

Mar 1, 2019

Prospects for Bioinspired Single-Photon Detection Using Nanotube-Chromophore Hybrids

Posted by in categories: computing, cyborgs, nanotechnology, quantum physics

The human eye is an exquisite photodetection system with the ability to detect single photons. The process of vision is initiated by single-photon absorption in the molecule retinal, triggering a cascade of complex chemical processes that eventually lead to the generation of an electrical impulse. Here, we analyze the single-photon detection prospects for an architecture inspired by the human eye: field-effect transistors employing carbon nanotubes functionalized with chromophores. We employ non-equilibrium quantum transport simulations of realistic devices to reveal device response upon absorption of a single photon. We establish the parameters that determine the strength of the response such as the magnitude and orientation of molecular dipole(s), as well as the arrangements of chromophores on carbon nanotubes. Moreover, we show that functionalization of a single nanotube with multiple chromophores allows for number resolution, whereby the number of photons in an incoming light packet can be determined. Finally, we assess the performance prospects by calculating the dark count rate, and we identify the most promising architectures and regimes of operation.

Read more

Mar 1, 2019

Scientists Just Took a Major Step Towards Injecting Eyes With Night Vision

Posted by in categories: nanotechnology, particle physics

How badly do we want this?


An incredible new nanotechnology could one day enable us to see in the dark. It works on mice, and there’s little to say it wouldn’t be equally effective on other mammals. The only drawback — how are you with needles to the eyeball?

Research led by the University of Science and Technology of China produced particles that adhere to light-detecting cells in the retina and help them respond to near-infrared (NIR) wavelengths.

Continue reading “Scientists Just Took a Major Step Towards Injecting Eyes With Night Vision” »

Feb 28, 2019

Cooperativity and entanglement pave way for ground-state cooling using nitrogen vacancy centers

Posted by in categories: engineering, nanotechnology, particle physics, quantum physics

Center for Nanoscale Materials researchers present a quantum model for achieving ground-state cooling in low frequency mechanical resonators and show how cooperativity and entanglement are key factors to enhance the cooling figure of merit.

A resonator with near-zero thermal noise has better performance characteristics in nanoscale sensing, quantum memories, and quantum information processing applications. Passive cryogenic cooling techniques, such as dilution refrigerators, have successfully cooled high-frequency resonators but are not sufficient for lower frequency systems. The optomechanical effect has been applied successfully to cool low-frequency systems after an initial cooling stage. This method parametrically couples a mechanical resonator to a driven optical cavity, and, through careful tuning of the drive frequency, achieves the desired cooling effect. The optomechanical effect is expanded to an alternative approach for ground-state cooling based on embedded solid-state defects. Engineering the atom-resonator coupling parameters is proposed, using the strain profile of the mechanical resonator allowing cooling to proceed through the dark entangled states of the two-level system ensemble.

Read more