Menu

Blog

Archive for the ‘nanotechnology’ category: Page 205

Feb 4, 2017

Scientists Simulate a New Material That Could Be Even Weirder Than Graphene

Posted by in categories: computing, nanotechnology, particle physics

We all love graphene — the one-atom-thick sheets of carbon aren’t just super flexible, harder than diamond, and stronger than steel, they’ve also recently become superconductors in their own right.

But it’s not the only over-achieving nanomaterial out there. Researchers have just simulated a stretched out, one-dimensional (1D) chain of boron, predicting that the material could have even weirder properties than graphene.

Continue reading “Scientists Simulate a New Material That Could Be Even Weirder Than Graphene” »

Feb 3, 2017

Scientists Have Turned Cooking Oil Into a Material 200 Times Stronger Than Steel

Posted by in categories: mobile phones, nanotechnology, particle physics, solar power, sustainability

Graphene cooking oil?


In Brief

  • Researchers have discovered a way to make soybean oil into the super-strong material graphene. The material has a wide variety of potential uses and can revolutionize electronics.
  • The material could be used to make cell phone batteries last 25 percent longer, make more effective solar cells, and even filter fuel out of air.

Researchers have found a way to turn cheap, everyday cooking oil into the wonder material graphene – a technique that could greatly reduce the cost of making the much-touted nanomaterial.

Continue reading “Scientists Have Turned Cooking Oil Into a Material 200 Times Stronger Than Steel” »

Feb 3, 2017

Neutrons reveal ‘quantum tunnelling’ on graphene enables the birth of stars

Posted by in categories: chemistry, nanotechnology, particle physics, quantum physics, space travel

Graphene is known as the world’s thinnest material due to its 2-D structure, in which each sheet is only one carbon atom thick, allowing each atom to engage in a chemical reaction from two sides. Graphene flakes can have a very large proportion of edge atoms, all of which have a particular chemical reactivity. In addition, chemically active voids created by missing atoms are a surface defect of graphene sheets. These structural defects and edges play a vital role in carbon chemistry and physics, as they alter the chemical reactivity of graphene. In fact, chemical reactions have repeatedly been shown to be favoured at these defect sites.

Interstellar molecular clouds are predominantly composed of hydrogen in molecular form (H2), but also contain a small percentage of dust particles mostly in the form of carbon nanostructures, called polyaromatic hydrocarbons (PAH). These clouds are often referred to as ‘star nurseries’ as their low temperature and high density allows gravity to locally condense matter in such a way that it initiates H fusion, the nuclear reaction at the heart of each star. Graphene-based materials, prepared from the exfoliation of graphite oxide, are used as a model of interstellar carbon dust as they contain a relatively large amount of , either at their edges or on their surface. These defects are thought to sustain the Eley-Rideal chemical reaction, which recombines two H into one H2 molecule.

The observation of interstellar clouds in inhospitable regions of space, including in the direct proximity of giant stars, poses the question of the origin of the stability of hydrogen in the molecular form (H2). This question stands because the clouds are constantly being washed out by intense radiation, hence cracking the hydrogen molecules into atoms. Astrochemists suggest that the chemical mechanism responsible for the recombination of atomic H into molecular H2 is catalysed by carbon flakes in interstellar clouds. Their theories are challenged by the need for a very efficient surface chemistry scenario to explain the observed equilibrium between dissociation and recombination. They had to introduce highly reactive sites into their models so that the capture of an atomic H nearby occurs without fail.

Continue reading “Neutrons reveal ‘quantum tunnelling’ on graphene enables the birth of stars” »

Feb 2, 2017

Scientists build world’s tiniest hammer to bang on brain cells

Posted by in categories: biotech/medical, nanotechnology, neuroscience

Way cool.


Feb. 2 (UPI) — Scientists at the University of California, Santa Barbara want to study the effects of various mechanical forces on individual brain cells. Until now, however, researchers didn’t have the right tools.

To study brain impacts at the nanoscale, researchers built the world’s tiniest hammer — the μHammer, or “microHammer.” The μHammer is a cellular-scale machine capable of applying a variety of mechanical forces to neural progenitor cells, brain-centric stem cells. Eventually, scientists hope to use the hammer to apply forces to neurons and neural tissue.

Continue reading “Scientists build world’s tiniest hammer to bang on brain cells” »

Feb 2, 2017

The next step in nanotechnology

Posted by in categories: computing, nanotechnology

Nearly every other year the transistors that power silicon computer chip shrink in size by half and double in performance, enabling our devices to become more mobile and accessible. But what happens when these components can’t get any smaller? George Tulevski researches the unseen and untapped world of nanomaterials. His current work: developing chemical processes to compel billions of carbon nanotubes to assemble themselves into the patterns needed to build circuits, much the same way natural organisms build intricate, diverse and elegant structures. Could they hold the secret to the next generation of computing?

TEDTalks is a daily video podcast of the best talks and performances from the TED Conference, where the world’s leading thinkers and doers give the talk of their lives in 18 minutes (or less). Look for talks on Technology, Entertainment and Design — plus science, business, global issues, the arts and much more.
Find closed captions and translated subtitles in many languages at http://www.ted.com/translate

Continue reading “The next step in nanotechnology” »

Feb 2, 2017

Living Forever: What it Means to Have an “Indefinite Lifespan”

Posted by in categories: biotech/medical, life extension, nanotechnology, Peter Diamandis, singularity

Can science really enable us stick around on Earth forever? Experts haven’t developed ways to make us invincible, immortal beings who are unsusceptible to physical trauma or starvation. However, studies have been going on to make aging just another preventable disease. Effectively stalling the deterioration of our bodies would then mean humans could live indefinitely.

Peter Diamandis, co-founder of San Diego-based genotype research facility Human Longevity, Inc., spoke at the Singularity University in California last September about challenging aging and the deterioration of the body. The key to unlocking an indefinite lifespan was to improve the repair mechanisms of the body, said Diamandis. His research teams consider the possibility of using stem cells or nanomachines to regenerate our bodies.

Last year, researchers from the Stanford University School of Medicine have used chromosome extensions that dramatically increased the rate of cell division, a growth mechanism of our bodies that weakens over time. The development hints at a chance to turn back the biological clock.

Continue reading “Living Forever: What it Means to Have an ‘Indefinite Lifespan’” »

Feb 1, 2017

Missouri S&T researcher works to develop nanodiamond materials

Posted by in categories: biotech/medical, chemistry, military, nanotechnology, particle physics

Nice.


When you think of diamonds, rings and anniversaries generally come to mind. But one day, the first thing that will come to mind may be bone surgery. By carefully designing modified diamonds at the nano-scale level, a Missouri University of Science and Technology researcher hopes to create multifunctional diamond-based materials for applications ranging from advanced composites to drug delivery platforms and biomedical imaging agents.

Dr. Vadym Mochalin, an associate professor of chemistry and materials science and engineering at Missouri S&T, is characterizing and modifying 5-nanometer nanodiamond particles produced from expired military grade explosives so that they can be developed to perform specific tasks. His current research studies their use as a filler in various types of composites.

Continue reading “Missouri S&T researcher works to develop nanodiamond materials” »

Feb 1, 2017

Coordinates of more than 23,000 atoms in technologically important material mapped

Posted by in categories: bioengineering, nanotechnology, particle physics, quantum physics

Nice read.


The results demonstrate that the positions of tens of thousands of atoms can be precisely identified and then fed into quantum mechanics calculations to correlate imperfections and defects with material properties at the single-atom level. This research will be published Feb 2. in the journal Nature.

Jianwei (John) Miao, a UCLA professor of physics and astronomy and a member of UCLA’s California NanoSystems Institute, led the international team in mapping the atomic-level details of the bimetallic nanoparticle, more than a trillion of which could fit within a grain of sand.

Continue reading “Coordinates of more than 23,000 atoms in technologically important material mapped” »

Feb 1, 2017

Black holes on an electronic chip

Posted by in categories: computing, cosmology, nanotechnology, quantum physics

Watch out for the black holes in those QC chips.


Eindhoven professor Rembert Duine has proposed a way to simulate black holes on an electronic chip. This makes it possible to study fundamental aspects of black holes in a laboratory on earth. Additionally, the underlying research may be useful for quantum technologies. Duine (also working at Utrecht University) and colleagues from Chile published their results today in Physical Review Letters.

“Right now, it’s purely theoretical,” says Duine, “but all the ingredients already exist. This could be happening in a lab one or two years from now.” One possibility is in the group of Physics of Nanostructures in the Department of Applied Physics. According to Duine, in these labs experiments are being done that are necessary to create this type of black holes.

Continue reading “Black holes on an electronic chip” »

Jan 29, 2017

Medical Robotics: Microrobots Could Be The Answer To Future Medicine

Posted by in categories: biotech/medical, engineering, nanotechnology, robotics/AI

I cannot wait. However, wish they would look at cancer treatment as one of the first trials.


SCIENCE

Medical Robotics: Microrobots Could Be The Answer To Future Medicine

Continue reading “Medical Robotics: Microrobots Could Be The Answer To Future Medicine” »