Toggle light / dark theme

Researchers have developed a liquid material that repairs torn clothes, and it it able to withstand subsequent washes in a washing machine.

Every invention starts with an idea. And a group of researchers at Pennsylvania State University have a rather great idea—making a piece of torn fabric heal itself.

After years of working on the concept, the team is more than pleased to have created a biodegradable liquid material that allows torn fabric to bind to itself back together, sans needles.

Read more

UNIVERSITY PARK, Pa. — Someday, chemically protective suits made of fabric coated in self-healing, thin films may prevent farmers from exposure to organophosphate pesticides, soldiers from chemical or biological attacks in the field and factory workers from accidental releases of toxic materials, according to a team of researchers.

“Fashion designers use natural fibers made of proteins like wool or silk that are expensive and they are not self-healing,” said Melik C. Demire l, professor of engineering science and mechanics. “We were looking for a way to make fabrics self-healing using conventional textiles. So we came up with this coating technology.”

The procedure is simple. The material to be coated is dipped in a series of liquids to create layers of material to form a self-healing, polyelectrolyte layer-by-layer coating.

Read more

Have you ever seen the movie called “The Haunting” with Liam Neeson and Catherine Zeta-Jones? If you have; you will appreciate this article. A living building.


The US’s Defense Advanced Research Projects Agency (DARPA) is attempting to build living, self-healing, programmable buildings.

DARPA’s Engineered Living Materials (ELM) program imagines that materials like bone, skin, bark and coral could form future building blocks as they provide advantages over non-living materials built with today, in that they can be grown where needed, self-repair when damaged and respond to changes in their surroundings.

“The vision of the ELM program is to grow materials on demand where they are needed,” said ELM program manager, Justin Gallivan.

In a development that could greatly help the study of quantum phenomena, scientists have created a theoretical model for a new form of light that combines the properties of photons and electrons. If turned into reality, the new light form could also be used to make electrical circuits which at present use electrons for conduction.

Scientists from Imperial College London published a study in the journal Nature Communications on Friday that shows “it is possible to create a new form of light by binding light to a single electron, combining the properties of both,” according to a statement issued by the college.

Light, which is made up of photons, usually interacts with a large number of electrons on the surface of whatever material it comes in contact with. For the study, researchers from Imperial used “a recently discovered class of materials known as topological inhibitors.” Combining that with “theoretical physics to model the behavior of light,” they found that light could interact with only one electron on the surface.

Read more

In approaches using conventional semiconductor materials, scientists typically created qubits in the form of individual electrons. However, this caused dephesing, and the information carriers were difficult to program and read. Now, researchers from the University of Basel, Ruhr University Bochum, and the Universite de Lyon have overcome this problem by using holes — instead of electrons — to create qubits.

A new type of quantum bit | university of basel.

A new Type of Quantum Bit | University of Basel

Read more

There’s the common notion that black holes suck in everything in the nearby vicinity by exerting a strong gravitational influence on the matter, energy, and space surrounding them. But astronomers have found that the dark matter around black holes might be a different story. Somehow dark matter resists ‘assimilation’ into a black hole.

About 23% of the Universe is made up of mysterious dark matter, invisible material only detected through its gravitational influence on its surroundings. In the early Universe clumps of dark matter are thought to have attracted gas, which then coalesced into stars that eventually assembled the galaxies we see today. In their efforts to understand galaxy formation and evolution, astronomers have spent a good deal of time attempting to simulate the build up of dark matter in these objects.

Read more