Toggle light / dark theme

I may have already posted about this, but this is more data from The Lancet.

Background.

Recent evidence indicates a potential therapeutic role of fluvoxamine for COVID-19. In the TOGETHER trial for acutely symptomatic patients with COVID-19, we aimed to assess the efficacy of fluvoxamine versus placebo in preventing hospitalisation defined as either retention in a COVID-19 emergency setting or transfer to a tertiary hospital due to COVID-19.

Methods.

This placebo-controlled, randomised, adaptive platform trial done among high-risk symptomatic Brazilian adults confirmed positive for SARS-CoV-2 included eligible patients from 11 clinical sites in Brazil with a known risk factor for progression to severe disease. Patients were randomly assigned (1:1) to either fluvoxamine (100 mg twice daily for 10 days) or placebo (or other treatment groups not reported here). The trial team, site staff, and patients were masked to treatment allocation. Our primary outcome was a composite endpoint of hospitalisation defined as either retention in a COVID-19 emergency setting or transfer to tertiary hospital due to COVID-19 up to 28 days post-random assignment on the basis of intention to treat. Modified intention to treat explored patients receiving at least 24 h of treatment before a primary outcome event and per-protocol analysis explored patients with a high level adherence (80%). We used a Bayesian analytic framework to establish the effects along with probability of success of intervention compared with placebo. The trial is registered at ClinicalTrials dot gov (NCT04727424) and is ongoing.


Treatment with fluvoxamine (100 mg twice daily for 10 days) among high-risk outpatients with early diagnosed COVID-19 reduced the need for hospitalisation defined as retention in a COVID-19 emergency setting or transfer to a tertiary hospital.

If you own any piece of jewelry with a ruby, you’re probably never going to look at it the same way again.

Forget those perfect gemstones you see glittering in store displays. What scientists are looking for are the flawed ones — the ones that contain inclusions which can whisper the secrets of Earth’s distant past, like that tardigrade trapped in amber. When researcher Chris Yakymchuk and his team unearthed a peculiar ruby in Greenland, the inclusion they found was what remained of life that was over 2.5 billion years old.

What was inside the ruby sounds common enough. Graphite is the same material pencils write with, but it is also a pure form of carbon that Yakymchuk determined to be all that was left of prehistoric microbes, possibly the same cyanobacteria (blue-green algae) that first released oxygen into Earth’s atmosphere through photosynthesis. He led a study recently published in Ore Geology Reviews.

The person staring back from the computer screen may not actually exist, thanks to artificial intelligence (AI) capable of generating convincing but ultimately fake images of human faces. Now this same technology may power the next wave of innovations in materials design, according to Penn State scientists.

“We hear a lot about deepfakes in the news today – AI that can generate realistic images of human faces that don’t correspond to real people,” said Wesley Reinhart, assistant professor of materials science and engineering and Institute for Computational and Data Sciences faculty co-hire, at Penn State. “That’s exactly the same technology we used in our research. We’re basically just swapping out this example of images of human faces for elemental compositions of high-performance alloys.”

The scientists trained a generative adversarial network (GAN) to create novel refractory high-entropy alloys, materials that can withstand ultra-high temperatures while maintaining their strength and that are used in technology from turbine blades to rockets.

A new type of plastic can rapidly heal itself under water, even in harsh conditions. It maintains its strength after self-healing, so it may be useful in emergencies at sea.

Lili Chen at Tsinghua University in China and her colleagues developed this material, called Rapid Underwater Self-healing Stiff Elastomer (RUSSE) because most self-healing polymers don’t work very well under water. “Room temperature self-healing polymers generally have a poor underwater stability, low healing strength and a slow healing process,” says Chen.

RUSSE is made of small chunks of a type of soft polymer used in some paints connected by nanometre-sized chains of a tougher polymer. The researchers tested the material’s properties by stretching it, cutting it and bashing it with a hammer.

A team of researchers from Worcester Polytechnic Institute, Woods Hole Oceanographic Institution and Harvard University believes that the plastic amassing in floating islands in the oceans could be used to power the ships that are sent to clean them up. In their paper published in Proceedings of the National Academy of Sciences, the group describes how ocean plastics could be converted to ship fuel.

Prior research has shown that millions of tons of plastics enter the each year—some of it is ground into fragments and disperses, and some of it winds up in colossal garbage patches floating in remote parts of the ocean. Because of the danger that such plastics present to ocean life, some environmentalists have begun cleanup operations. Such operations typically involve sending a ship to a garbage patch, collecting as much as the ship will hold and then bringing it back to port for processing. In this new effort, the researchers suggest it would be far more efficient and greener to turn the into fuel for both a processing machine and for uninterrupted operation of the ships.

The researchers note that the plastic in a could be converted to a type of oil via hydrothermal liquefaction (HTL). In this process, the plastic is heated to 300–550 degrees Celsius at pressures 250 to 300 times that of sea-level conditions. The researchers have calculated that a ship carrying an HTL converter would be capable of producing enough oil to run the HTL converter and the ship’s engine. Under their scenario, plastic collection booms would be permanently stationed at multiple sites around a large patch, able to load the plastic it collects onto ships.

Last year, scientists inferentially detected the existence of 2D visual mental representations that fundamentally change vision science. “The question becomes, what are they exactly? Are they patterns of neurons firing? Are they some kind of phenomenon not necessarily reducible to any kind of physical substrate?” Asks Jessica M. Wilson, philosopher and author of the book Metaphysical Emergence.

Coming up, scientists and philosophers spanning three countries weigh in on an experiment to discover the material nature of consciousness and the content of our experiences.

Let’s start with a definition: Consciousness is awareness. It’s the qualitative experience of that awareness — what it’s like to be something.