Menu

Blog

Archive for the ‘materials’ category: Page 18

Aug 10, 2024

All Life on Earth Might Have Started From Lightning, Scientists Say

Posted by in categories: climatology, materials

Fascinating study!


A new study suggests that cloud-to-ground lightning likely provided the necessary material for the first organisms on Earth to form.

Aug 9, 2024

Revealing the True Habits of ISS Astronauts Through Space Archaeology

Posted by in categories: materials, space

How do astronauts cope with life onboard the International Space Station (ISS) and how can scientists study it? This is what a recent study published in PLoS ONE hopes to address as an international team of researchers used archaeological investigation strategies to ascertain how ISS crew members managed their lives in space, specifically pertaining to the astronauts’ habits of using and storing the various materials onboard the orbiting outpost. This study holds the potential to help scientists better understand how humans cope with living in space for long periods of time, which could be useful for trips to the Moon and Mars, someday.

The study, known as the Sampling Quadrangle Assemblages Research Experiment (SQuARE) experiment, was conducted over a 60-day period between January and March 2022 where six common locations onboard the ISS were designated as “squares”, which is a common archaeology strategy of digging pits to ascertain the most viable areas of further investigation. During the study, the astronauts photographed each square every day to ascertain how they were used, and the researchers would compare that to the location’s original purpose.

Aug 9, 2024

Breakthrough in molecular control: New bioinspired double helix with switchable chirality

Posted by in categories: innovation, materials

Helical foldamers are a class of artificial molecules that fold into well-defined helical structures like helices found in proteins and nucleic acids. They have garnered considerable attention as stimuli-responsive switchable molecules, tuneable chiral materials, and cooperative supramolecular systems due to their chiral and conformational switching properties.

Double-helical foldamers exhibit not only even stronger chiral properties but also , such as the transcription of chiral information from one chiral strand to another without chiral properties, enabling potential applications in higher-order structural control related to replication, like nucleic acids.

However, the artificial control of the chiral switching properties of such artificial molecules remains challenging due to the difficulty in balancing the dynamic properties required for switching and stability. Although various helical molecules have been developed in the past, reversal of twist direction in double-helix molecules and supramolecules has rarely been reported.

Aug 8, 2024

Lasers deliver powerful shocking punch in material experiments

Posted by in category: materials

Shock experiments are widely used to understand the mechanical and electronic properties of matter under extreme conditions, like planetary impacts by meteorites. However, after the shock occurs, a clear description of the post-shock thermal state and its impacts on material properties is still lacking.

Aug 8, 2024

Hidden harmonies: Team discovers magnon–phonon Fermi resonance in an antiferromagnet

Posted by in categories: computing, materials

Soon, data storage centers are expected to consume almost 10% of the world’s energy generation. This increase is, among other things, due to intrinsic limitations of the materials used—ferromagnets. Consequently, this problem has ignited a quest for faster and more energy-efficient materials.

Aug 7, 2024

0.2-micron: US makes world’s highest-performance superconducting wire

Posted by in category: materials

A combination of manufacturing techniques led to thin HTS film that delivered highest electric density and pinning forces for superconductor wire.

Aug 7, 2024

Researchers solve long-standing challenge for piezoelectric materials

Posted by in category: materials

Heat and pressure can deteriorate the properties of piezoelectric materials that make state-of-the-art ultrasound and sonar technologies possible – and fixing that damage has historically required disassembling devices and exposing the materials to even higher temperatures. Now researchers have developed a technique to restore those properties at room temperature, making it easier to repair these devices – and paving the way for new ultrasound technologies.

Piezoelectric materials have many applications, including sonar technologies and devices that generate and sense ultrasound waves. But for these devices to efficiently generate sonar or ultrasound waves, the material needs to be “poled.”

That’s because the piezoelectric materials used for sonar and ultrasound applications are mostly ferroelectric. And like all ferroelectric materials, they exhibit a phenomenon called spontaneous polarization. That means they contain pairs of positively and negatively charged ions called dipoles. When a ferroelectric material is poled, that means all of its dipoles have been pulled into alignment with an external electric field. In other words, the dipoles are all oriented in the same direction, which makes their piezoelectric properties more pronounced.

Aug 7, 2024

Team fabricates world’s highest-performance superconducting wire segment

Posted by in categories: materials, nuclear energy

Our future energy may depend on high-temperature superconducting (HTS) wires. This technology’s ability to carry electricity without resistance at temperatures higher than those required by traditional superconductors could revolutionize the electric grid and even enable commercial nuclear fusion.

Aug 6, 2024

Atoms in advanced alloys find preferred neighbors when solidifying

Posted by in categories: materials, particle physics

A discovery that uncovered the surprising way atoms arrange themselves and find their preferred neighbors in multi-principal element alloys (MPEA) could enable engineers to “tune” these unique and useful materials for enhanced performance in specific applications ranging from advanced power plants to aerospace technologies, according to the researchers who made the finding.

Aug 6, 2024

Unlocking Future Technologies With Magnetic Control of Rare Earth Elements

Posted by in categories: computing, materials

Laser pulses have been shown to adjust the magnetic properties of rare earths by affecting 4f electrons, opening avenues for quicker and more energy-efficient data storage devices.

The special properties of rare earth magnetic materials are due to the electrons in the 4f shell. Until now, the magnetic properties of 4f electrons were considered almost impossible to control. Now, scientists have shown for the first time that laser pulses can influence 4f electrons — and thus change their magnetic properties. The discovery, which was made through experiments at EuXFEL and FLASH, opens up a new way to data storage with rare earth elements.

Breakthrough in Magnetic Properties Control.

Page 18 of 302First1516171819202122Last