Menu

Blog

Archive for the ‘materials’ category: Page 171

Aug 21, 2020

You Could Win $25K Worth of 3D Printing Services

Posted by in categories: 3D printing, materials

A start-up based in Berkeley, California, polySpectra, is attempting to make better materials for 3D printing. Their inaugural material, COR Alpha, promises to be a stronger and more durable material for digital light processing (DLP) printing. If it’s a compelling fit for your project, you could win $25,000 worth of 3D printing services from polySpectra.

In an attempt to spur the development of 3D printed projects with COR Alpha, polySpectra is holding the Make It Real 3D Printing Challenge. The challenge calls for submissions of designs that could benefit from the new material. The winner will receive $25,000 worth of polySpectra’s 3D printing services in the form of mentoring, design consultation, functional prototyping, qualification, testing and fabrication. Applications are due September 28.

Aug 20, 2020

Scientists create water filtration membranes that can clean themselves

Posted by in categories: food, materials

Scientists at the Department of Energy’s (DOE) Argonne National Laboratory have developed a light-activated coating for filtration membranes—the kind used in water treatment facilities, at semiconductor manufacturing sites and within the food and beverage industry—to make them self-cleaning, eliminating the need to shut systems down in order to repair them.

Cheap and effective, have been around for years but have always been vulnerable to clogging from organic and that stop up its pores over time, a phenomenon known as fouling.

“Anything you stick in water is going to become fouled sooner or later,” said Argonne senior scientist Seth Darling.

Aug 20, 2020

A new kind of plastic that is able to maintain its original qualities when recycled

Posted by in category: materials

A team of researchers from the U.S., China, and Saudi Arabia has developed a new kind of plastic that is able to maintain its original qualities when recycled. In their paper published in the journal Science Advances, the group describes how the new plastic is made and how well it did when tested for recyclability.

For many years, plastics have been seen as a highly desirable modern advancement—they are light, strong, bendable when needed, and can be used in a very wide variety of applications. The down side to plastics, of course, is that they do not recycle very well and they take a very long time to decay. This has led to millions of tons of plastic waste winding up in landfills and in the water table. Because of that, scientists have been hard a work looking for a new kind of plastic that has all the advantages of the old plastic but also can be easily recycled. In this new effort, the researchers claim to have developed just such a plastic.

The researchers made the new plastic by preparing a bridged bicyclic thiolactone from a bio-based olefin carboxylic acid. The result was a plastic (they called PBTL) that had all the qualities of traditional plastics. They next tested their plastic by conducting bulk depolymerization at 100°C using a catalyst. Testing of the result showed the PBTL had been broken down into its original monomer. They followed that up by breaking down samples of PBTL (using a catalyst) at room temperature. And once again, close examination showed the sample had been broken down to the original monomer.

Aug 20, 2020

Kepler’s supernova remnant: Debris from stellar explosion not slowed after 400 years

Posted by in categories: cosmology, materials

Astronomers have used NASA’s Chandra X-ray Observatory to record material blasting away from the site of an exploded star at speeds faster than 20 million miles per hour. This is about 25,000 times faster than the speed of sound on Earth.

Kepler’s supernova remnant is the debris from a detonated star that is located about 20,000 light years away from Earth in our Milky Way galaxy. In 1604 early astronomers, including Johannes Kepler who became the object’s namesake, saw the supernova explosion that destroyed the star.

Continue reading “Kepler’s supernova remnant: Debris from stellar explosion not slowed after 400 years” »

Aug 19, 2020

Metamaterials Generate Gecko-Like Adhesive Force

Posted by in category: materials

Circa 2012


Back in 1871, James Clerk Maxwell predicted that light exerts a force on any surface it hits. This radiation pressure was experimentally discovered some 30 years later and has since emerged as a hugely important force that is now exploited in systems such as solar sails and laser cooling.

Today, John Zhang and buddies at the University of Southampton in the UK go one better. These guys predict that a far more powerful optical force can exist between a metal or dielectric plate and a metamaterial, a substance with optical properties that have been engineered to control light in specific ways.

Continue reading “Metamaterials Generate Gecko-Like Adhesive Force” »

Aug 19, 2020

Scientists create new super-hard metal

Posted by in categories: biotech/medical, materials

Circa 2016


A super-hard metal has been made in the laboratory by melting together titanium and gold.

The alloy is the hardest known metallic substance compatible with living tissues, say US physicists.

Continue reading “Scientists create new super-hard metal” »

Aug 19, 2020

Ultralight ‘Super-Material’ Is 10 Times Stronger Than Steel

Posted by in categories: materials, particle physics

Circa 2016


By using heat and temperature to modify the orientation of atoms, scientists have created a spongy, ultrastrong material that is lighter than a zip-close bag.

Aug 15, 2020

Scientists Create a Material That Makes Salty Water Safe to Drink in Minutes

Posted by in categories: materials, sustainability

Technology that can convert salty seawater or brackish water into safe, clean drinking water has the potential to transform millions of lives across the globe, which is why so many scientists are busy working on projects to do just that.

Now, a new innovation developed by scientists in Australia could be the most promising one yet, with researchers using metal-organic framework compounds (or MOFs) together with sunlight to purify water in just half an hour, using a process that’s more efficient than existing techniques.

It’s cheap, it’s stable, it’s reusable, and it produces water that meets the World Health Organisation (WHO) standards for desalination. Around 139.5 litres (nearly 37 gallons) of clean water can be produced per day from a kilogram (2.2 pounds) of MOF material, based on early testing.

Aug 13, 2020

Hubble Finds Cause for Betelgeuse’s Mysterious Dimming – Is Aging Red Supergiant About to Supernova?

Posted by in categories: cosmology, materials

Hubble Finds That Betelgeuse’s Mysterious Dimming Is Due to a Traumatic Outburst

Observations by NASA ’s Hubble Space Telescope are showing that the unexpected dimming of the supergiant star Betelgeuse was most likely caused by an immense amount of hot material ejected into space, forming a dust cloud that blocked starlight coming from Betelgeuse’s surface.

Hubble researchers suggest that the dust cloud formed when superhot plasma unleashed from an upwelling of a large convection cell on the star’s surface passed through the hot atmosphere to the colder outer layers, where it cooled and formed dust grains. The resulting dust cloud blocked light from about a quarter of the star’s surface, beginning in late 2019. By April 2020, the star returned to normal brightness.

Aug 12, 2020

A highly light-absorbent and tunable material

Posted by in category: materials

Novel two-dimensional materials are currently a hot research topic around the world. Of special interest are van der Waals heterostructures, which are made up of individual layers of different materials held together by van der Waals forces. The interactions between the different layers can give the resulting material entirely new properties.

Double layer unlocks crucial properties

There are already van der Waals heterostructures that absorb up to 100 percent of light. Single-layers of molybdenum disulfide offer absorption capacities in this range. When light is absorbed, an electron vacates its original position in the , leaving behind a positively charged hole. The electron moves to a higher energy level, known as the conduction band, where it can move freely.