Toggle light / dark theme

To demonstrate the capabilities of their diamond storage system, the researchers encoded a famous sequence of photographs by Eadweard Muybridge.

“The team then stored images by mapping the brightness of each pixel to the brightness levels of specific sites inside the diamond,” New Scientist reported.

Interestingly, the system achieved a remarkable level of accuracy and completeness, successfully storing and retrieving the images with 99%.

Nuclear microreactors in remote areas require robust monitoring for safe operation.


A team of researchers at the University of Michigan has developed a groundbreaking real-time, 3D temperature mapping system for nuclear microreactors.

This innovation promises to enhance safety monitoring and pave the way for wider adoption of these compact power sources.

Kuhn’s taxonomy of consciousness connects various theories to deep questions about human existence and AI, based on his extensive dialogue with over 200 experts.

“Out of meat, how do you get thought? That’s the grandest question,” said philosopher Patricia Churchland to Robert Lawrence Kuhn, the producer and host of the acclaimed PBS program Closer to Truth and member of FQxI’s scientific advisory council.

Kuhn has now published a comprehensive taxonomy of proposed solutions and theories regarding the hard problem of consciousness. His organizing framework aims to assess their impact on meaning, purpose, and value, as well as on AI consciousness, virtual immortality, survival beyond death, and free will. His work, titled ‘Landscape of Consciousness,’ appeared in the August 2024 issue of the journal Progress in Biophysics and Molecular Biology.

Researchers have explained how the regularly structured topographic maps in the visual cortex of the brain could arise spontaneously to efficiently process visual information. This research provides a new framework for understanding functional architectures in the visual cortex during early developmental stages.

A KAIST research team led by Professor Se-Bum Paik from the Department of Bio and Brain Engineering has demonstrated that the orthogonal organization of retinal mosaics in the periphery is mirrored onto the and initiates the clustered topography of higher visual areas in the brain.

This new finding provides advanced insights into the mechanisms underlying a biological strategy of brain circuitry for the efficient tiling of sensory modules. The study was published in Cell Reports on January 5.

Researchers have explained how visual cortexes develop uniquely across the brains of different mammalian species. A KAIST research team led by Professor Se-Bum Paik from the Department of Bio and Brain Engineering has identified a single biological factor, the retino-cortical mapping ratio, that predicts distinct cortical organizations across mammalian species.

This new finding has resolved a long-standing puzzle in understanding visual neuroscience regarding the origin of functional architectures in the visual cortex. The study, published in Cell Reports on March 10, demonstrates that the evolutionary variation of biological parameters may induce the development of distinct functional circuits in the visual cortex, even without -specific developmental mechanisms.

In the (V1) of mammals, neural tuning to visual stimulus orientation is organized into one of two distinct topographic patterns across species. While primates have columnar orientation maps, a salt-and-pepper type organization is observed in rodents.

Researchers have developed a method to precisely locate hydrogen atoms within nanofilams, a breakthrough with significant implications for superconductivity and other material properties.

Their study, employing nuclear reaction analysis and ion channeling, revealed how hydrogen and its isotopes are distributed within titanium nanofilms, offering insights into tuning the material properties for various applications including hydrogen storage and catalysis.

Impact of hydrogen on material properties.

This finding, published in Science, was demonstrated by researchers from the Max Planck Institute of Animal Behavior, the Cluster of Excellence Center for the Advanced Study of Collective Behavior at the University of Konstanz, Germany, Tel Aviv University, and the Hebrew University of Jerusalem, Israel.

Would you be able to instantly recognize your location and find your way home from any random point within a three-kilometer radius, in complete darkness, with only a flashlight to guide you?

Echolocating bats face a similar challenge, with a local and directed beam of sound—their —to guide their way. Bats have long been known for their use of echolocation to avoid obstacles and orient themselves.

A newly discovered crescent of galaxies spanning 3.3 billion light-years is one of the world’s largest known structures, challenging some of astronomers’ most fundamental assumptions about the universe.

The epic arrangement known as the Giant Arc is made up of galaxies, galaxy clusters, and a lot of gas and dust. It is located 9.2 billion light-years away and stretches across roughly a 15th of the observable universe.

Its discovery was “serendipitous,” according to Alexia Lopez, a doctoral candidate in cosmology at the University of Central Lancashire (UCLan) in the United Kingdom. Lopez was creating maps of things in the night sky using light from approximately 120,000 quasars, which are distant brilliant cores of galaxies where supermassive black holes consume material and produce energy.