Toggle light / dark theme

A (Relatively) Brief Introduction to The Principles of Economics & Evolution: A Survival Guide for the Inhabitants of Small Islands, Including the Inhabitants of the Small Island of Earth

Posted in asteroid/comet impacts, biological, complex systems, cosmology, defense, economics, existential risks, geopolitics, habitats, human trajectories, lifeboat, military, philosophy, sustainabilityTagged , , , , , , , , , , , | 2 Comments on A (Relatively) Brief Introduction to The Principles of Economics & Evolution: A Survival Guide for the Inhabitants of Small Islands, Including the Inhabitants of the Small Island of Earth

(NOTE: Selecting the “Switch to White” button on the upper right-hand corner of the screen may ease reading this text).

“Who are you?” A simple question sometimes requires a complex answer. When a Homeric hero is asked who he is.., his answer consists of more than just his name; he provides a list of his ancestors. The history of his family is an essential constituent of his identity. When the city of Aphrodisias… decided to honor a prominent citizen with a public funeral…, the decree in his honor identified him in the following manner:

Hermogenes, son of Hephaistion, the so-called Theodotos, one of the first and most illustrious citizens, a man who has as his ancestors men among the greatest and among those who built together the community and have lived in virtue, love of glory, many promises of benefactions, and the most beautiful deeds for the fatherland; a man who has been himself good and virtuous, a lover of the fatherland, a constructor, a benefactor of the polis, and a savior.
– Angelos Chaniotis, In Search of an Identity: European Discourses and Ancient Paradigms, 2010

I realize many may not have the time to read all of this post — let alone the treatise it introduces — so for those with just a few minutes to spare, consider abandoning the remainder of this introduction and spending a few moments with a brief narrative which distills the very essence of the problem at hand: On the Origin of Mass Extinctions: Darwin’s Nontrivial Error.

But for those with the time and inclinations for long and windy paths through the woods, please allow me to introduce myself: I was born and raised in Kentland, Indiana, a few blocks from the train station where my great-great grandfather, Barney Funk, arrived from Germany, on Christmas day of 1859. I completed a BSc in Entrepreneurship and an MFA in film at USC, and an MA in Island Studies at UPEI. I am a naturalist, Fellow of The Linnean Society of London, PhD candidate in economics at the University of Malta, hunter & fisherman, NRA member, protective father, and devoted husband with a long, long line of illustrious ancestors, a loving mother & father, extraordinary brothers & sister, wonderful wife, beautiful son & daughter, courageous cousins, and fantastic aunts, uncles, in-laws, colleagues, and fabulous friends!

Thus my answer to the simple question, “Who are you?” requires a somewhat complex answer as well.

But time is short and I am well-positioned to simplify because all of the hats I wear fall under a single umbrella: I am a friend of the Lifeboat Foundation (where I am honoured to serve on the Human Trajectories, Economics, Finance, and Diplomacy Advisory Boards), a foundation “dedicated to encouraging scientific advancements while helping humanity survive existential risks.”

Almost everything I do – including the roles, associations, and relationships noted above, supports this mission.

It’s been nearly a year since Eric generously publish Principles of Economics & Evolution: A Survival Guide for the Inhabitants of Small Islands, Including the Inhabitants of the Small Island of Earth, and since that time I have been fortunate to receive many interesting and insightful emails packed full of comments and questions; thus I would like to take this opportunity to introduce this work – which represents three years of research.

Those interested in taking the plunge and downloading the file above may note that this discourse

tables an evolutionarily stable strategy for the problem of sustainable economic development – on islands and island-like planets (such as Earth), alike, and thus this treatise yields, in essence, a long-term survival guide for the inhabitants of Earth.

Thus you may expect a rather long, complex discourse.

This is indeed what you may find – a 121 page synthesis, including this 1,233 page Digital Supplement.

As Nassim Nicholas Taleb remarked in Fooled by Randomness:

I do not dispute that arguments should be simplified to their maximum potential; but people often confuse complex ideas that cannot be simplified into a media-friendly statement as symptomatic of a confused mind. MBAs learn the concept of clarity and simplicity—the five-minute manager take on things. The concept may apply to the business plan for a fertilizer plant, but not to highly probabilistic arguments—which is the reason I have anecdotal evidence in my business that MBAs tend to blow up in financial markets, as they are trained to simplify matters a couple of steps beyond their requirement.

But there is indeed a short-cut — in fact, there are at least two short-cuts.

First, perhaps the most direct pleasant approach to the summit is a condensed, 237 page thesis: On the Problem of Sustainable Economic Development: A Game-Theoretical Solution.

But for those pressed for time and/or those merely interested in sampling a few short, foundational works (perhaps to see if you’re interested in following me down the rabbit hole), the entire theoretical content of this 1,354-page report (report + digital supplement) may be gleamed from 5 of the 23 works included within the digital supplement. These working papers and publications are also freely available from the links below – I’ll briefly relate how these key puzzle pieces fit together:

The first publication offers a 13-page over-view of our “problem situation”: On the Origin of Mass Extinctions: Darwin’s Nontrivial Error.

Second is a 21-page game-theoretical development which frames the problem of sustainable economic development in the light of evolution – perhaps 70% of our theoretical content lies here: On the Truly Noncooperative Game of Life on Earth: In Search of the Unity of Nature & Evolutionary Stable Strategy.

Next comes a 113-page gem which attempts to capture the spirit and essence of comparative island studies, a course charted by Alexander von Humboldt and followed by every great naturalist since (of which, more to follow). This is an open letter to the Fellows of the Linnean Society of London, a comparative study of two, diametrically opposed economic development plans, both put into action in that fateful year of 1968 — one on Prince Edward Island, the other on Mustique. This exhaustive work also holds the remainder of the foundation for our complete solution to this global dilemma – and best of all, those fairly well-versed in game theory need not read it all, the core solution may be quickly digested on pages 25–51:
On the Truly Noncooperative Game of Island Life: Introducing a Unified Theory of Value & Evolutionary Stable ‘Island’ Economic Development Strategy.

Fourth comes an optional, 19-page exploration that presents a theoretical development also derived and illuminated through comparative island study (including a mini-discourse on methods). UPEI Island Studies Programme readers with the time and inclination for only one relatively short piece, this may be the one to explore. And, despite the fact that this work supports the theoretical content linked above, it’s optional because there’s nothing new here – in fact, these truths have been well known and meticulously documented for over 1,000 years – but it may prove to be a worthwhile, engaging, and interesting read nonetheless, because these truths have become so unfashionable that they’ve slipped back into relative obscurity: On the Problem of Economic Power: Lessons from the Natural History of the Hawaiian Archipelago.

And finally I’ll highlight another optional, brief communique – although this argument may be hopelessly compressed, here, in 3 pages, is my entire solution:
Truly Non-Cooperative Games: A Unified Theory.

Yes, Lifeboat Foundation family and friends, you may wish to pause to review the abstracts to these core, foundational works, or you may even wish to review them completely and put the puzzle pieces together yourself (the pages linked above total 169 – or a mere 82 pages if you stick to the core excerpt highlighted in my Linnean Letter), but, as the great American novelist Henry Miller remarked:

In this age, which believes that there is a short cut to everything, the greatest lesson to be learned is that the most difficult way is, in the long run, the easiest.

Why?

That’s yet another great, simple question that may require several complex answers, but I’ll give you three:

#1). First and foremost, because explaining is a difficult art.

As Richard Dawkins duly noted:

Explaining is a difficult art. You can explain something so that your reader understands the words; and you can explain something so that the reader feels it in the marrow of his bones. To do the latter, it sometimes isn’t enough to lay the evidence before the reader in a dispassionate way. You have to become an advocate and use the tricks of the advocate’s trade.

Of course much of this depends upon the reader – naturally some readers may find that less (explanation) is more. Others, however, may find benefit from reading even more (more, that is, than my report and the digital supplement). You may find suggested preliminary and complimentary texts in the SELECTED BIBLIOGRAPHY (below). The report itself includes these and many more. In short, the more familiar readers may be with some or all of these works, the less explaining they may require.

#2). No matter how much explaining you do, it’s actually never enough, and, as Abraham Lincoln wisely noted at Gettysburg, the work is never done. For more one this important point, let’s consider the words of Karl Popper:

When we propose a theory, or try to understand a theory, we also propose, or try to understand, its logical implications; that is, all those statements which follow from it. But this… is a hopeless task: there is an infinity of unforeseeable nontrivial statements belonging to the informative content of any theory, and an exactly corresponding infinity of statements belonging to its logical content. We can therefore never know or understand all the implications of any theory, or its full significance.
This, I think, is a surprising result as far as it concerns logical content; though for informative content it turns out to be rather natural…. It shows, among other things, that understanding a theory is always an infinite task, and that theories can in principle be understood better and better. It also shows that, if we wish to understand a theory better, what we have to do first is to discover its logical relation to those existing problems and existing theories which constitute what we may call the ‘problem situation’.
Admittedly, we also try to look ahead: we try to discover new problems raised by our theory. But the task is infinite, and can never be completed.

In fact, when it comes right down to it, my treatise – in fact, my entire body of research, is, in reality, merely an exploration of the “infinity of unforeseeable nontrivial statements belonging to the informative content” of the theory for which Sir Karl Popper is famous: his solution to David Hume’s problem of induction (of which you’ll hear a great deal if you brave the perilous seas of thought in the works introduced and linked herewith).

#3). Okay, this is a tricky one, but here it goes: Fine, a reasonable skeptic may counter, I get it, it’s hard to explain and there’s a lot of explaining to do – but if 100% of the theoretical content may be extracted from less than 200 pages, then doesn’t that mean you could cut about 1,000 pages?

My answer?

Maybe.

But then again, maybe not.

The reality of the situation is this: neither I nor anyone else can say for sure – this is known as the mind-body problem. In essence, given the mind-body problem, not only am I unable to know exactly how to explain something I know, moreover, I’m not even able to know how it is that I know what I know. I’m merely able to guess. Although this brief introduction is not the proper time nor place to explore the contents of this iteration of Pandora’s Box, those interested in a thorough exploration of this particular problem situation would be well-served with F.A. von Hayek’s The Sensory Order: An Inquiry into the Foundations of Theoretical Psychology (1952). But, in short, the bulk of the Digital Supplement and much of the report itself is merely an attempt to combat the mind-body problem – an attempt to put down as much of the history (and methodology) of this theoretical development as possible. As Descartes remarked at the outset of a treatise on scientific method:

This Tract is put forth merely as a history, or, if you will, as a tale, in which, amid some examples worthy of imitation, there will be found, perhaps, as many more which it were advisable not to follow, I hope it will prove useful to some without being hurtful to any, and that my openness will find some favor with all.

Perhaps you may grasp my theoretical development – but perhaps you may grasp it in a matter by which I did not intend for you to grasp it – perhaps I had stumbled upon a truth in another work within my digital supplement that may make it all clear. Or, perhaps I’ve got it all wrong, and perhaps you – by following in my footsteps through the historical course of this theoretical development (faithfully chronicled in the digital supplement) – may be able to help show me my error (and then, of course we may both rejoice); Malthus felt likewise:

If [the author] should succeed in drawing the attention of more able men to what he conceives to be the principal difficulty in… society and should, in consequence, see this difficulty removed, even in theory, he will gladly retract his present opinions and rejoice in a conviction of his error.

Anticipating another point regarding style: This report is very, very unusual insofar as style is concerned. It’s personal, highly opinionated, and indulges artistic license at almost every turn in the road. In fact, you may also find this narrative a touch artistic – yet it’s all true. As Norman Maclean remarked in A River Runs Trough It, “You like to tell true stories, don’t you?’ he asked, and I answered, ‘Yes, I like to tell stories that are true.’”

I like to tell stories that are true, too, and if you like to read them, then this epic journey of discovery may be for you. I speak to this point at length, but, in short, I submit that there is a method to the madness (in fact, the entire report may also be regarded as an unusual discourse on method).

Why have I synthesized this important theoretical development in an artistic narrative? In part, because Bruno Frey (2002) clearly stated why that’s the way it should be.

But I also did so in hopes that it may help readers grasp what it’s really all about; as the great Russian-American novelist Ayn Rand detailed:

Man’s profound need of art lies in the fact that his cognitive faculty is conceptual, i.e., that he acquires knowledge by means of abstractions, and needs the power to bring his widest metaphysical abstractions into his immediate, perceptual awareness. Art fulfills this need: by means of a selective re-creation, it concretizes man’s fundamental view of himself and of existence. It tells man, in effect, which aspects of his experience are to be regarded as essential, significant, important. In this sense, art teaches man how to use his consciousness.

Speaking of scientific method: I have suggested that my curiously creative narrative may offer some insight into the non-existent subject of scientific method — so please download for much more along these lines — but I want to offer an important note, especially for colleagues, friends, students, and faculty at UPEI: I sat in on a lecture last winter where I was surprised to learn that “island studies” had been recently invented by Canada research chair – thus I thought perhaps I should offer a correction and suggest where island studies really began:

Although it is somewhat well known that Darwin and Wallace pieced the theory of evolution together independently, yet at roughly the same time – Wallace, during his travels through the Malay archipelago, and Darwin, during his grand circumnavigation of the island of Earth onboard the Beagle (yes, the Galapagos archipelago played a key role, but perhaps not as important as has been suggested in the past). But what is not as commonly know is that both Darwin and Wallace had the same instructor in the art of comparative island studies. Indeed, Darwin and Wallace both traveled with identical copies of the same, treasured book: Alexander von Humboldt’s Personal Narrative of Travels to the Equinoctial Regions of the New Continent. Both also testified to the fundamental role von Humboldt played by inspiring their travels and, moreover, developing of their theories.

Thus, I submit that island studies may have been born with the publication of this monumental work in 1814; or perhaps, as Berry (2009) chronicled in Hooker and Islands (see SELECTED BIBLIOGRAPHY, below), it may have been Thomas Pennant or Georg Forster:

George Low of Orkney provided, together with Gilbert White, a significant part of the biological information used by pioneering travel writer Thomas Pennant, who was a correspondent of both Joseph Banks and Linnaeus [Pennant dedicated his Tour in Scotland and Voyage to the Hebrides (1774–76) to Banks and published Banks’s description of Staffa, which excited much interest in islands; Banks had travelled with James Cook and visited many islands; Georg Forster, who followed Banks as naturalist on Cook’s second voyage inspired Alexander Humboldt, who in turn Darwin treated as a model.

But whomever it may have been — or whomever you may ultimately choose to follow — Humboldt certainly towers over the pages of natural history, and Gerard Helferich’s Humboldt’s Cosmo’s: Alexander von Humboldt and the Latin American Journey that Changed the WayWe See the World (2004) tells Humboldt’s story incredibly well. This treasure also happens to capture the essence of Humboldt’s method, Darwin’s method, Wallace’s method, Mayr’s method, Gould’s method, and it most certainly lays out the map I have attempted to follow:

Instead of trying to pigeonhole the natural world into prescribed classification, Kant had argued, scientists should work to discover the underlying scientific principles at work, since only those general tenets could fully explain the myriad natural phenomena. Thus Kant had extended the unifying tradition of Thales, Newton, Descartes, et al.… Humboldt agreed with Kant that a different approach to science was needed, one that could account for the harmony of nature… The scientific community, despite prodigious discoveries, seemed to have forgotten the Greek vision of nature as an integrated whole.… ‘Rather than discover new, isolated facts I preferred linking already known ones together,’ Humboldt later wrote. Science could only advance ‘by bringing together all the phenomena and creations which the earth has to offer. In this great sequence of cause and effect, nothing can be considered in isolation.’ It is in this underlying connectedness that the genuine mysteries of nature would be found. This was the deeper truth that Humboldt planned to lay bare – a new paradigm from a New World. For only through travel, despite its accompanying risks, could a naturalist make the diverse observations necessary to advance science beyond dogma and conjecture. Although nature operated as a cohesive system, the world was also organized into distinct regions whose unique character was the result of all the interlocking forces at work in that particular place. To uncover the unity of nature, one must study the various regions of the world, comparing and contrasting the natural processes at work in each. The scientist, in other words, must become an explorer.

With these beautiful words in mind and the spirit of adventure in the heart, I thank you for listening to this long story about an even longer story, please allow me to be your guide through an epic adventure.

But for now, in closing, I’d like to briefly return to the topic at hand: human survival on Earth.

A few days ago, Frenchman Alain Robert climbed the world’s tallest building – Burj Khalifa – in Dubai.

After the six hour climb, Robert told Gulf News, “My biggest fear is to waste my time on earth.”

I certainly share Robert’s fear – Alexander von Humboldt, Darwin, and Wallace did, too, by the way.

But then Robert added, “To live, we don’t need much, just a roof over our heads some food and drink and that’s it … everything else is superficial.”

I’m afraid that’s where Robert and I part ways – and if you would kindly join me on a journey through The Principles of Economics & Evolution: A Survival Guide for the Inhabitants of Small Islands, Including the Inhabitants of the Small Island of Earth – I would love to explain why Robert’s assertion is simply not true.

Please feel free to post comments or contact me with any thoughts, comments, questions, or suggestions.

MWF
Charlottetown, Prince Edward Island

PS: My report suggests many preliminary and complimentary readings – but I’ve revisited this topic with the aim of producing a selected bibliography of the most condensed and readily accessible (i.e, freely available online) works which may help prepare the reader for my report and the foundational theoretical discourses noted and linked above. Most are short papers, but a few great books and dandy dissertations may be necessary as well!

SELECTED BIBLIOGRAPHY

BERRY, R. (2009). Hooker and islands. Bio Journal Linn Soc 96:462–481.

DARWIN, C., WALLACE, A. (1858). On the Tendency of Species to form Varieties; and on the Perpetuation of Varieties and Species by Natural Means of Selection. Proc Linn Soc 3:45–62.

DARWIN, C., et. al. (1849). A Manual of Scientific Enquiry; Prepared for the use of Her Majesty’s Navy : and Adapted for Travellers in General (Murray, London).

DOBZHANSK Y, T. (1973). Nothing in biology makes sense except in light of evolution. Amer Biol Teacher 35:125- 129.

EINSTEIN, A. (1920). Relativity: The Special and General Theory (Methuen & Co., London).

FIELDING, R. (2010). Artisanal Whaling in the Atlantic: A Comparative Study of Culture, Conflict, and Conservation in St. Vincent and the Faroe Islands. A PhD dissertation (Louisiana State University, Baton Rouge).

FREY, B. (2002). Publishing as Prostitution? Choosing Between One‘s Own Ideas and Academic Failure. Pub Choice 116:205–223.

FUNK, M. (2010a). Truly Non-Cooperative Games: A Unified Theory. MPRA 22775:1–3.

FUNK, M. (2008). On the Truly Noncooperative Game of Life on Earth: In Search of the Unity of Nature & Evolutionary Stable Strategy. MPRA 17280:1–21.

FUNK, M. (2009a). On the Origin of Mass Extinctions: Darwin’s Nontrivial Error. MPRA 20193:1–13.

FUNK, M. (2009b). On the Truly Noncooperative Game of Island Life: Introducing a Unified Theory of Value & Evolutionary Stable ‘Island’ Economic Development Strategy. MPRA 19049:1–113.

FUNK, M. (2009c). On the Problem of Economic Power: Lessons from the Natural History of the Hawaiian Archipelago. MPRA 19371:1–19.

HELFERICH, G. (2004). Humboldt’s Cosmo’s: Alexander von Humboldt and the Latin American Journey that Changed the Way We See the World (Gotham Books, New York).

HOLT, C., ROTH, A. (2004). The Nash equilibrium: A perspective. Proc Natl Acad Sci USA 101:3999–4000.

HAYEK, F. (1974). The Pretense of Knowledge. Nobel Memorial Lecture, 11 December 1974. 1989 reprint. Amer Econ Rev 79:3–7.

HUMBOLDT, A., BONPLAND, A. (1814). Personal Narrative of Travels to the Equinoctial Regions of the New Continent (Longman, London).

KANIPE, J. (2009). The Cosmic Connection: How Astronomical Events Impact Life on Earth (Prometheus, Amherst).

MAYNARD SMITH, J. (1982). Evolution and the Theory of Games (Cambridge Univ, New York).

MAYR, E. (2001). What Evolution Is (Basic Books, New York).

NASH, J., et., al. (1994). The Work of John Nash in Game Theory. Prize Seminar, December 8, 1994 (Sveriges Riksbank, Stockholm).

NASH, J. (1951). Non-Cooperative Games. Ann Math 54:286–295.

NASH, J. (1950). Two-Person Cooperative Games. RAND P-172 (RAND, Santa Monica).

POPPER, K. (1999). All life is Problem Solving (Routledge, London).

POPPER, K. (1992). In Search of a Better World (Routledge, London).

ROGERS, D., EHRLICH, P. (2008). Natural selection and cultural rates of change. Proc Natl Acad Sci USA 105:3416 −3420.

SCHWEICKART, R., et. al. (2006). Threat Mitigation: The Gravity Tractor. NASA NEO Workshop, Vail, Colorado.

SCHWEICKART, R., et. al. (2006). Threat Mitigation: The Asteroid Tugboat. NASA NEO Workshop, Vail, Colorado.

STIGLER, G. (1982). Process and Progress of Economics. J of Pol Econ 91:529–545.

TALEB, N. (2001). Fooled by Randomness (Texere, New York).

WEIBULL, J. (1998). WHAT HAVE WE LEARNED FROM EVOLUTIONARY GAME THEORY SO FAR? (Stockholm School of Economics, Stockholm).

WALLACE, A. (1855). On the Law Which has Regulated the Introduction of New Species. Ann of Nat History 16:184–195.

Ray Kurzweil is unique for having seen the unstoppable exponential growth of the computer revolution and extrapolating it correctly towards the attainment of a point which he called “singularity” and projects about 50 years into the future. At that point, the brain power of all human beings combined will be surpassed by the digital revolution.

The theory of the singularity has two flaws: a reparable and a hopefully not irreparable one. The repairable one has to do with the different use humans make of their brains compared to that of all animals on earth and presumably the universe. This special use can, however, be clearly defined and because of its preciousness be exported. This idea of “galactic export” makes Kurzweil’s program even more attractive.

The second drawback is nothing Ray Kurzweil has anything to do with, being entirely the fault of the rest of humankind: The half century that the singularity still needs to be reached may not be available any more.

The reason for that is CERN. Even though presented in time with published proofs that its proton-colliding experiment will with a probability of 8 percent produce a resident exponentially growing mini black hole eating earth inside out in perhaps 5 years time, CERN prefers not to quote those results or try and dismantle them before acting. Even the call by an administrative court (Cologne) to convene the overdue scientific safety conference before continuing was ignored when CERN re-ignited the machine a week ago.

This is most interesting news for singularity theorists. The majority of the currently living population of planet earth is unable to “think exponentially.” Can Ray Kurzweil or Lifeboat or the Singularity University somehow entice CERN into dialog before it is too late?

For J.O.R. (March 10, 2011)


What do Singularitarianism and popular Western religion have in common? More than you might imagine. A thumbnail evaluation of both ends of the American technocentric intelligence spectrum reveals both remarkable similarities in their respective narrative constructions and, naturally, amusing disparities. It would appear that all humans, regardless of our respective beliefs, seem to express goal-oriented hardwiring that demands a neatly constructed story to frame our experiences.

Be you a technophile, you are eagerly awaiting, with perhaps equal parts hope and fear, the moment when artificial general intelligence surpasses human intelligence. You don’t know exactly how this new, more cunning intelligence will react to humans, but you’re fairly certain that humanity might well be in a bit of trouble, or at very least, have some unique competition.

Be you a technophobe, you shun the trappings of in-depth science and technology involvement, save for a superficial interaction with the rudimentary elements of technology which likely do not extend much further than your home computer, cell phone, automobile, and/or microwave oven. As a technophobe, you might even consider yourself religious, and if you’re a Christian, you might well be waiting for the second-coming, the rapture.

Both scenarios lead humanity to ironically similar destinations, in which humankind becomes either marginalized or largely vestigial.

It’s difficult to parse either eventuality with observant members of the other’s belief system. If you ask a group of technophiles what they think of the idea of the rapture you will likely be laughed at or drown in tidal wave of atheist drool. The very thought of some magical force eviscerating an entire religious population in one eschatological fell swoop might be too much for some science and tech geeks, and medical attention, or at the very least a warehouse-quantity dose of smelling salts, might be in order.

Conversely, to the religiously observant, the notion of the singularity might for them, exist in terms too technical to even theoretically digest or represent something entirely dark or sinister that seems to fulfill their own belief system’s end game, a kind of techno-holocaust that reifies their purported faith.

The objective reality of both scenarios will be very different than either envisioned teleologies. Reality’s shades of gray of have a way of making foolish even the wisest individual’s predictions.

In my personal life, I too believed that the publication of my latest and most ambitious work, explaining the decidedly broad-scope Parent Star Theory would also constitute an end result of significant consequence, much like the popular narrative surrounding the moment of the singularity; that some great finish line was reached. The truth, however, is that just like the singularity, my own narrative-ized moment was not a precisely secured end, but a distinct moments of beginning, of conception and commitment. Not an arrival but a departure; a bold embarkation without clear end in sight.

Rather than answers, the coming singularity should provoke additional questions. How do we proceed? Where do we go from here? If the fundamental rules in the calculus of the human equation are changing, then how must we adapt? If the next stage of humanity exists on a post-scarcity planet, what then will be our larger goals, our new quest as a global human force?

Humanity must recognize that the idea of a narrative is indeed useful, so long as that narrative maintains some aspect of open-endedness. We might well need that consequential beginning-middle-end, if only to be reminded that each end most often leads to a new beginning.

Written by Zachary Urbina, Founder, Cozy Dark

The existential risk reduction career network is a career network for those interested in getting a relatively well-paid job and donating substantial amounts (relative to income) to non-profit organizations focused on the reduction of existential risks, in the vein of SIAI, FHI, and the Lifeboat Foundation.

The aim is to foster a community of donors, and to allow donors and potential donors to give each other advice, particularly regarding the pros and cons of various careers, and for networking with like-minded others within industries. For example, someone already working in a large corporation could give a prospective donor advice about how to apply for a job.

Over time, it is hoped that the network will grow to a relatively large size, and that donations to existential risk-reduction from the network will make up a substantial fraction of funding for the beneficiary organizations.

In isolation, individuals may feel like existential risk is too large a problem to make a dent in, but collectively, we can make a huge difference. If you are interested in helping us make a difference, then please check out the network and request an invitation.

Please feel free to contact the organizers at [email protected] with any comments or questions.

This is a crosspost from Nextbigfuture

I looked at nuclear winter and city firestorms a few months ago I will summarize the case I made then in the next section. There is significant additions based on my further research and email exchanges that I had with Prof Alan Robock and Brian Toon who wrote the nuclear winter research.

The Steps needed to prove nuclear winter:
1. Prove that enough cities will have firestorms or big enough fires (the claim here is that does not happen)
2. Prove that when enough cities in a suffient area have big fire that enough smoke and soot gets into the stratosphere (trouble with this claim because of the Kuwait fires)
3. Prove that condition persists and effects climate as per models (others have questioned that but this issue is not addressed here

The nuclear winter case is predictated on getting 150 million tons (150 teragram case) of soot, smoke into the stratosphere and having it stay there. The assumption seemed to be that the cities will be targeted and the cities will burn in massive firestorms. Alan Robock indicated that they only included a fire based on the radius of ignition from the atmospheric blasts. However, in the scientific american article and in their 2007 paper the stated assumptions are:

assuming each fire would burn the same area that actually did burn in Hiroshima and assuming an amount of burnable material per person based on various studies.

The implicit assumption is that all buildings react the way the buildings in Hiroshima reacted on that day.

Therefore, the results of Hiroshima are assumed in the Nuclear Winter models.
* 27 days without rain
* with breakfast burners that overturned in the blast and set fires
* mostly wood and paper buildings
* Hiroshima had a firestorm and burned five times more than Nagasaki. Nagasaki was not the best fire resistant city. Nagasaki had the same wood and paper buildings and high population density.
Recommendations
Build only with non-combustible materials (cement and brick that is made fire resistant or specially treated wood). Make the roofs, floors and shingles non-combustible. Add fire retardants to any high volume material that could become fuel loading material. Look at city planning to ensure less fire risk for the city. Have a plan for putting out city wide fires (like controlled flood from dams which are already near cities.)

Continue reading “Nuclear Winter and Fire and Reducing Fire Risks to Cities” | >

It is interesting to note that the technical possibility to send interstellar Ark appeared in 1960th, and is based on the concept of “Blust-ship” of Ulam. This blast-ship uses the energy of nuclear explosions to move forward. Detailed calculations were carried out under the project “Orion”. http://en.wikipedia.org/wiki/Project_Orion_(nuclear_propulsion) In 1968 Dyson published an article “Interstellar Transport”, which shows the upper and lower bounds of the projects. In conservative (ie not imply any technical achievements) valuation it would cost 1 U.S. GDP (600 billion U.S. dollars at the time of writing) to launch the spaceship with mass of 40 million tonnes (of which 5 million tons of payload), and its time of flight to Alpha Centauri would be 1200 years. In a more advanced version the price is 0.1 U.S. GDP, the flight time is 120 years and starting weight 150 000 tons (of which 50 000 tons of payload). In principle, using a two-tier scheme, more advanced thermonuclear bombs and reflectors the flying time to the nearest star can reduce to 40 years.
Of course, the crew of the spaceship is doomed to extinction if they do not find a habitable and fit for human planet in the nearest star system. Another option is that it will colonize uninhabited planet. In 1980, R. Freitas proposed a lunar exploration using self-replicating factory, the original weight of 100 tons, but to control that requires artificial intelligence. “Advanced Automation for Space Missions” http://www.islandone.org/MMSG/aasm/ Artificial intelligence yet not exist, but the management of such a factory could be implemented by people. The main question is how much technology and equipment should be enough to throw at the moonlike uninhabited planet, so that people could build on it completely self-sustaining and growing civilization. It is about creating something like inhabited von Neumann probe. Modern self-sustaining state includes at least a few million people (like Israel), with hundreds of tons of equipment on each person, mainly in the form of houses, roads. Weight of machines is much smaller. This gives us the upper boundary of the able to replicate human colony in the 1 billion tons. The lower estimate is that there would be about 100 people, each of which accounts for approximately 100 tons (mainly food and shelter), ie 10 000 tons of mass. A realistic assessment should be somewhere in between, and probably in the tens of millions of tons. All this under the assumption that no miraculous nanotechnology is not yet open.
The advantage of a spaceship as Ark is that it is non-specific reaction to a host of different threats with indeterminate probabilities. If you have some specific threat (the asteroid, the epidemic), then there is better to spend money on its removal.
Thus, if such a decision in the 1960th years were taken, now such a ship could be on the road.
But if we ignore the technical side of the issue, there are several trade-offs on strategies for creating such a spaceship.
1. The sooner such a project is started, the lesser technically advanced it would be, the lesser would be its chances of success and higher would be cost. But if it will be initiated later, the greater would be chances that it will not be complete until global catastrophe.
2. The later the project starts, the greater are the chance that it will take “diseases” of mother civilization with it (e.g. ability to create dangerous viruses ).
3. The project to create a spaceship could lead to the development of technologies that threaten civilization itself. Blast-ship used as fuel hundreds of thousands of hydrogen bombs. Therefore, it can either be used as a weapon, or other party may be afraid of it and respond. In addition, the spaceship can turn around and hit the Earth, as star-hammer — or there maybe fear of it. During construction of the spaceship could happen man-made accidents with enormous consequences, equal as maximum to detonation of all bombs on board. If the project is implementing by one of the countries in time of war, other countries could try to shoot down the spaceship when it launched.
4. The spaceship is a means of protection against Doomsday machine as strategic response in Khan style. Therefore, the creators of such a Doomsday machine can perceive the Ark as a threat to their power.
5. Should we implement a more expensive project, or a few cheaper projects?
6. Is it sufficient to limit the colonization to the Moon, Mars, Jupiter’s moons or objects in the Kuiper belt? At least it can be fallback position at which you can check the technology of autonomous colonies.
7. The sooner the spaceship starts, the less we know about exoplanets. How far and how fast the Ark should fly in order to be in relative safety?
8. Could the spaceship hide itself so that the Earth did not know where it is, and should it do that? Should the spaceship communicate with Earth? Or there is a risk of attack of a hostile AI in this case?
9. Would not the creation of such projects exacerbate the arms race or lead to premature depletion of resources and other undesirable outcomes? Creating of pure hydrogen bombs would simplify the creation of such a spaceship, or at least reduce its costs. But at the same time it would increase global risks, because nuclear non-proliferation will suffer complete failure.
10. Will the Earth in the future compete with its independent colonies or will this lead to Star Wars?
11. If the ship goes off slowly enough, is it possible to destroy it from Earth, by self-propelling missile or with radiation beam?
12. Is this mission a real chance for survival of the mankind? Flown away are likely to be killed, because the chance of success of the mission is no more than 10 per cent. Remaining on the Earth may start to behave more risky, in logic: “Well, if we have protection against global risks, now we can start risky experiments.” As a result of the project total probability of survival decreases.
13. What are the chances that its computer network of the Ark will download the virus, if it will communicate with Earth? And if not, it will reduce the chances of success. It is possible competition for nearby stars, and faster machines would win it. Eventually there are not many nearby stars at distance of about 5 light years — Alpha Centauri, the Barnard star, and the competition can begin for them. It is also possible the existence of dark lonely planets or large asteroids without host-stars. Their density in the surrounding space should be 10 times greater than the density of stars, but to find them is extremely difficult. Also if nearest stars have not any planets or moons it would be a problem. Some stars, including Barnard, are inclined to extreme stellar flares, which could kill the expedition.
14. The spaceship will not protect people from hostile AI that finds a way to catch up. Also in case of war starships may be prestigious, and easily vulnerable targets — unmanned rocket will always be faster than a spaceship. If arks are sent to several nearby stars, it does not ensure their secrecy, as the destination will be known in advance. Phase transition of the vacuum, the explosion of the Sun or Jupiter or other extreme event can also destroy the spaceship. See e.g. A.Bolonkin “Artificial Explosion of Sun. AB-Criterion for Solar Detonation” http://www.scribd.com/doc/24541542/Artificial-Explosion-of-S…Detonation
15. However, the spaceship is too expensive protection from many other risks that do not require such far removal. People could hide from almost any pandemic in the well-isolated islands in the ocean. People can hide on the Moon from gray goo, collision with asteroid, supervolcano, irreversible global warming. The ark-spaceship will carry with it problems of genetic degradation, propensity for violence and self-destruction, as well as problems associated with limited human outlook and cognitive biases. Spaceship would only burden the problem of resource depletion, as well as of wars and of the arms race. Thus, the set of global risks from which the spaceship is the best protection, is quite narrow.
16. And most importantly: does it make sense now to begin this project? Anyway, there is no time to finish it before become real new risks and new ways to create spaceships using nanotech.
Of course it easy to envision nano and AI based Ark – it would be small as grain of sand, carry only one human egg or even DNA information, and could self-replicate. The main problem with it is that it could be created only ARTER the most dangerous period of human existence, which is the period just before Singularity.

For any assembly or structure, whether an isolated bunker or a self sustaining space colony, to be able to function perpetually, the ability to manufacture any of the parts necessary to maintain, or expand, the structure is an obvious necessity. Conventional metal working techniques, consisting of forming, cutting, casting or welding present extreme difficulties in size and complexity that would be difficult to integrate into a self sustaining structure.

Forming requires heavy high powered machinery to press metals into their final desired shapes. Cutting procedures, such as milling and lathing, also require large, heavy, complex machinery, but also waste tremendous amounts of material as large bulk shapes are cut away emerging the final part. Casting metal parts requires a complex mold construction and preparation procedures, not only does a negative mold of the final part need to be constructed, but the mold needs to be prepared, usually by coating in ceramic slurries, before the molten metal is applied. Unless thousands of parts are required, the molds are a waste of energy, resources, and effort. Joining is a flexible process, and usually achieved by welding or brazing and works by melting metal between two fixed parts in order to join them — but the fixed parts present the same manufacturing problems.

Ideally then, in any self sustaining structure, metal parts should be constructed only in the final desired shape but without the need of a mold and very limited need for cutting or joining. In a salient progressive step toward this necessary goal, NASA demonstrates the innovative Electron Beam Free Forming Fabrication (http://www.aeronautics.nasa.gov/electron_beam.htm) Process. A rapid metal fabrication process essentially it “prints” a complex three dimensional object by feeding a molten wire through a computer controlled gun, building the part, layer by layer, and adding metal only where you desire it. It requires no molds and little or no tooling, and material properties are similar to other forming techniques. The complexity of the part is limited only by the imagination of the programmer and the dexterity of the wire feed and heating device.

Electron beam freeform fabrication process in action
Electron beam freeform fabrication process in action

According to NASA materials research engineer Karen Taminger, who is involved in developing the EBF3 process, extensive simulations and modeling by NASA of long duration space flights found no discernable pattern to the types of parts which failed, but the mass of the failed parts remained remarkably consistent throughout the studies done. This is a favorable finding to in-situe parts manufacturing and because of this the EBF³ team at NASA has been developing a desktop version. Taminger writes:

“Electron beam freeform fabrication (EBF³) is a cross-cutting technology for producing structural metal parts…The promise of this technology extends far beyond its applicability to low-cost manufacturing and aircraft structural designs. EBF³ could provide a way for astronauts to fabricate structural spare parts and new tools aboard the International Space Station or on the surface of the moon or Mars”

NASA’s Langley group working on the EBF3 process took their prototype desktop model for a ride on the microgravity simulating NASA flight and found the process works just fine even in micro gravity, or even against gravity.

A structural metal part fabricated from EBF³
A structural metal part fabricated from EBF³

The advantages this system offers are significant. Near net shape parts can be manufactured, significantly reducing scrap parts. Unitized parts can be made — instead of multiple parts that need riveting or bolting, final complex integral structures can be made. An entire spacecraft frame could be ‘printed’ in one sitting. The process also creates minimal waste products and is highly energy and feed stock efficient, critical to self sustaining structures. Metals can be placed only where they are desired and the material and chemistry properties can be tailored through the structure. The technical seminar features a structure with a smooth transitional gradient from one alloy to another. Also, structures can be designed specifically for their intended purposes, without needing to be tailored to manufacturing process, for example, stiffening ridges can be curvilinear, in response to the applied forces, instead of typical grid patterns which facilitate easy conventional manufacturing techniques. Manufactures, such as Sciaky Inc, (http://www.sciaky.com/64.html) are all ready jumping on the process

In combination with similar 3D part ‘printing’ innovations in plastics and other materials, the required complexity for sustaining all the mechanical and structural components of a self sustaining structure is plummeting drastically. Isolated structures could survive on a feed stock of scrap that is perpetually recycled as worn parts are replaced by free form manufacturing and the old ones melted to make new feed stock. Space colonies could combine such manufacturing technologies and scrap feedstock with resource collection creating a viable minimal volume and energy consuming system that could perpetually repair the structure – or even build more. Technologies like these show that the atomic level control that nanotechnology manufacturing proposals offer are not necessary to create self sustaining structure, and that with minor developments of modern technology, self sustaining structures could be built and operated successfully.

Many years ago, in December 1993 to be approximate, I noticed a space-related poster on the wall of Eric Klien’s office in the headquarters of the Atlantis Project. We chatted for a bit about the possibilities for colonies in space. Later, Eric mentioned that this conversation was one of the formative moments in his conception of the Lifeboat Foundation.

Another friend, filmmaker Meg McLain has noticed that orbital hotels and space cruise liners are all vapor ware. Indeed, we’ve had few better depictions of realistic “how it would feel” space resorts since 1968’s Kubrick classic “2001: A Space Odyssey.” Remember the Pan Am flight to orbit, the huge hotel and mall complex, and the transfer to a lunar shuttle? To this day I know people who bought reservation certificates for whenever Pan Am would begin to fly to the Moon.

In 2004, after the X Prize victory, Richard Branson announced that Virgin Galactic would be flying tourists by 2007. So far, none.

A little later, Bigelow announced a fifty million dollar prize if only tourists could be launched to orbit by January 2010. I expect the prize money won’t be claimed in time.

Why? Could it be that the government is standing in the way? And if tourism in space can’t be “permitted” what of a lifeboat colony?

Meg has set out to make a documentary film about how the human race has arrived four decades after the Moon landing and still no tourist stuff. Two decades after Kitty Hawk, a person could fly across the country; three decades, across any ocean.

Where are the missing resorts?

Here is the link to her film project:
http://www.freewebs.com/11at40/

Jim Davies of Strike the Root writes about Galt’s Gulch and some gulch-like projects. These appeal to him because of the exponential trends in government power and abuse of power. He writes, in part,

“We have the serious opportunity in our hands right now of terminating the era of government absolutely, and so of removing from the human race the threat of ever more brutal tyranny ending only with WMD annihilation–while opening up vistas of peaceful prosperity and technological progress which even a realist like myself cannot find words to describe. ”

http://www.strike-the-root.com/91/davies/davies11.html

Avoiding those terrible events is what building our Lifeboat is all about. Got Lifeboat?