Toggle light / dark theme

150 YEARS MAXIMUM BIOLOGICAL AGE — “We observed, that the age-dependent population DOSI distribution broadening could be explained by a progressive loss of physiological resilience measured by the DOSI auto-correlation time. Extrapolation of this trend suggested that DOSI recovery time and variance would simultaneously diverge at a critical point of 120 − 150 years of age corresponding to a complete loss of resilience. The observation was immediately confirmed by the independent analysis of correlation properties of intraday physical activity levels fluctuations collected by wearable devices. We conclude that the criticality resulting in the end of life is an intrinsic biological property of an organism that is independent of stress factors and signifies a fundamental or absolute limit of human lifespan.”


We investigated the dynamic properties of the organism state fluctuations along individual aging trajectories in a large longitudinal database of CBC measurements from a consumer diagnostics laboratory. To simplify the analysis, we used a log-linear mortality estimate from the CBC variables as a single quantitative measure of aging process, henceforth referred to as dynamic organism state index (DOSI). We observed, that the age-dependent population DOSI distribution broadening could be explained by a progressive loss of physiological resilience measured by the DOSI auto-correlation time. Extrapolation of this trend suggested that DOSI recovery time and variance would simultaneously diverge at a critical point of 120 − 150 years of age corresponding to a complete loss of resilience. The observation was immediately confirmed by the independent analysis of correlation properties of intraday physical activity levels fluctuations collected by wearable devices. We conclude that the criticality resulting in the end of life is an intrinsic biological property of an organism that is independent of stress factors and signifies a fundamental or absolute limit of human lifespan.

P.O. Fedichev is a shareholder of Gero LLC. A.Gudkov is a member of Gero LLC Advisory Board. T.V. Pyrkov, K. Avchaciov, A.E. Tarkhov, L. Menshikov, and P.O. Fedichev are employees of Gero LLC.

Researchers at ETH Zurich recently identified a previously unknown compartment in mammalian cells. They have named it the exclusome. It is made up of DNA rings known as plasmids. The researchers have published details of their discovery in the journal Molecular Biology of the Cell.

The new compartment is in the cell plasma; it is previously uncharacterized in the literature. It is exceptional because eukaryotic cells (cells with nuclei) usually keep most of their DNA in the , where it is organized into chromosomes.

Some of the plasmids that end up in the exclusome originate from outside the cell, while others—known as telomeric rings—come from the capped ends of chromosomes, the telomeres. Particularly in certain , the ones from the telomeres are regularly pinched off and joined together to form rings. However, these don’t contain the blueprints for proteins.

George Church at his most optimistic. June 1, 2022.


Dr George Church talks about combination therapies for age reversal, recently published papers from his lab and expresses his wish on developing inexpensive gene therapies like vaccine that can be equitably distributed to human.

Dr George Church is the Robert Winthrop Professor of Genetics at Harvard Medical School, a Professor of Health Sciences and Technology at Harvard and the Massachusetts Institute of Technology (MIT), and a core faculty member of the Wyss Institute.

If you believe the headlines, seaweeds can do almost anything from storing tons of carbon and stopping cows from belching methane, to making biofuels and renewable plastics – all while sustaining vibrant coastal ecosystems and feeding communities.

Add to that list their potential wound-healing properties and possible anti-aging effects, and it’s no wonder the seaweed farming industry is booming.

A new study adds to that fanfare, with lab experiments based on human-like skin cells revealing extracts from two brown seaweeds can inhibit reactions linked to skin aging and boost collagen levels.

Do you use biological age tests to quantify your fitness goals? I updated this piece with the latest products (there are a ton) and found a few discount codes too.


Update 10/2/2023: This post has been updated since we originally published it. I evaluated additional top biological age tests for 2024, removed companies that are no longer offering tests, and updated the post to reflect the most recent pricing. The post has been cleaned up and links were made current.

According to TikTok, I’m either 46-years-old, 37-years-old, or 29-years-old. As a 34-year-old woman, that’s, ahem, less than ideal.

TikTok offers a filter that guesses how old the user is based on their uploaded face. Pulling my long hair up into a ponytail ages me by over a decade, and standing in natural lighting makes me appear younger than I actually am.

Gene therapy company Genflow Biosciences has received positive feedback from Belgium’s Federal Agency for Medicines and Health Products as it seeks to move into human clinical trials. Genflow is developing gene therapies that target the aging process, with a focus on reducing and delaying age-related diseases.

Genflow’s approach involves the use of adeno-associated virus (AAV) vectors to deliver copies of the Sirtuin-6 (SIRT6) gene variant found in centenarians into cells. Sirtuins are a group of proteins that play a vital role in regulating various cellular processes. In recent years, SIRT6 has gained attention for its potential role in promoting healthy aging.

Genflow says it has received written advice from the FAHMP to commence clinical trials of its lead compound (GF-1002) in patients suffering from NASH, an aggressive form of non-alcoholic fatty liver disease, rather than in healthy volunteers. While further discussions and agreement with the European Medicine Agency (EMA) are still required, Genflow says that it expects a NASH clinical trial to commence in approximately 18 months.

The last 2 questions and the answers are great. The first starts at 30 minutes. And I like his answer to the 2nd question especially, the time is 33:54. “What is giving me great hope is that we’re entering the phases where we have more than enough tools to get really get close to escape velocity.”


Genome Engineering for Healthy Longevity – George Church at Longevity Summit Dublin 2023.

#GeorgeChurch #GenomeEngineering #HealthyLongevity #LongevitySummitDublin2023 #AgingResearch #DublinConference #LongevityScience #BiomedicalEngineering #GeneticModification #DublinTalks #GenomicInnovation #MedicalScience #LongevityResearch #PrecisionMedicine #AgingInterventions #Healthspan #GenomeEditing #AntiAging #LongevityInsights #Genetics #Innovation

Insilico Medicine, a clinical-stage generative AI-driven drug discovery company has announced that the company has used Microsoft BioGPT to identify targets against both the aging process and major age-related diseases.

Longevity. Technology: ChatGPT – the AI chatbot – can craft poems, write webcode and plan holidays. Large language models (LLMs) are the cornerstone of chatbots like GPT-4; trained on vast amounts of text data, they have been contributing to advances in diverse fields including literature, art and science – but their potential in the complex realms of biology and genomics has yet to be fully unlocked.

Stem cells from the human stomach can be converted into cells that secrete insulin in response to rising blood sugar levels, offering a promising approach to treating diabetes, according to a preclinical study from researchers at Weill Cornell Medicine.

In the study, which appeared April 27 in Nature Cell Biology, the researchers showed that they could take stem cells obtained from human stomach tissue and reprogram them directly—with strikingly high efficiency—into cells that closely resemble pancreatic insulin-secreting cells known as beta cells. Transplants of small groups of these cells reversed disease signs in a mouse model of diabetes.

“This is a proof-of-concept study that gives us a solid foundation for developing a treatment, based on patients’ own cells, for type 1 diabetes and severe type 2 diabetes,” said study senior author Dr. Joe Zhou, an associate professor of regenerative medicine and a member of the Hartman Institute for Therapeutic Organ Regeneration at Weill Cornell Medicine.