Toggle light / dark theme

World’s largest public stem cell bank inaugurated in California

California researchers opened the world’s largest publicly available stem cell bank Tuesday, which will aid in the search for cures for genetic diseases such as Alzheimer’s, epilepsy and autism.

Universities from around the state will contribute adult skin samples to the bank, while the Buck Institute for Research in Novato will store the material.

The Stem Cell Bank is funded through a $32 million grant awarded in 2013 by the California Institute for Regenerative Medicine, which itself was established in 2004 through voter approval of Proposition 71. That measure provided an initial $3 billion in state bonds to the institute.

Read more

Hacking Aging

What would you say if I told you that aging happens not because of accumulation of stresses, but rather because of the intrinsic properties of the gene network of the organism? I’m guessing you’d be like: surprised .

So, here’s the deal. My biohacker friends led by Peter Fedichev and Sergey Filonov in collaboration with my old friend and the longevity record holder Robert Shmookler Reis published a very cool paper. They proposed a way to quantitatively describe the two types of aging – negligible senescence and normal aging. We all know that some animals just don’t care about time passing by. Their mortality doesn’t increase with age. Such negligibly senescent species include the notorious naked mole rat and a bunch of other critters like certain turtles and clams to name a few. So the paper explains what it is exactly that makes these animals age so slowly – it’s the stability of their gene networks.

What does network stability mean then? Well, it’s actually pretty straightforward – if the DNA repair mechanisms are very efficient and the connectivity of the network is low enough, then this network is stable. So, normally aging species, such as ourselves, have unstable networks. This is a major bummer by all means. But! There is a way to overcome this problem, according to the proposed math model.

The model very generally describes what happens with a gene network over time – the majority of the genes are actually working perfectly, but a small number doesn’t. There are repair mechanisms that take care of that. Also, there are mechanisms that take care of defected proteins like heat shock proteins, etc. Put together all of this in an equasion and solve it, and bam! here’s an equasion that gives you the Gompertz law for all species that have normal aging, and a time independent constant for the negligibly senescent ones.

What’s the difference between those two aging regimes? The model suggests it’s the right combination of DNA repair efficiency and the combined efficiency of proteolysis and heat shock response systems, mediating degradation and refolding of misfolded proteins. So, it’s not the the accumulation of damages that is responsible for aging, but rather the properties of the gene network itself. The good news is that even we are playing with a terrible hand at first, there is a chance we can still win by changing the features of our network and making it stable. For example, by optimizing misfolded protein response or DNA repair.

Read more

Telomere dysfunction induces metabolic and mitochondrial compromise. Nature

Dr DePinho released a paper in 2012, this builds on previous papers and his theory of the “telomere-p53-PGC axis”. This is a big reason along with the work of Dr Michael Fossel I believe telomerase therapy is probably the best chance of radical life extension in the near future. This is one of a number of papers that implicate dysfunctional telomeres in a cascade that causes mitochondrial dysfunction and various other aging consequences.

ABSTRACT Telomere dysfunction activates p53-mediated cellular growth arrest, senescence and apoptosis to drive progressive atrophy and functional decline in high-turnover tissues. The broader adverse impact of telomere dysfunction across many tissues including more quiescent systems prompted transcriptomic network analyses to identify common mechanisms operative in haematopoietic stem cells, heart and liver. These unbiased studies revealed profound repression of peroxisome proliferator-activated receptor gamma, coactivator 1 alpha and beta (PGC-1α and PGC-1β, also known as Ppargc1a and Ppargc1b, respectively) and the downstream network in mice null for either telomerase reverse transcriptase (Tert) or telomerase RNA component (Terc) genes. Consistent with PGCs as master regulators of mitochondrial physiology and metabolism, telomere dysfunction is associated with impaired mitochondrial biogenesis and function, decreased gluconeogenesis, cardiomyopathy, and increased reactive oxygen species. In the setting of telomere dysfunction, enforced Tert or PGC-1α expression or germline deletion of p53 (also known as Trp53) substantially restores PGC network expression, mitochondrial respiration, cardiac function and gluconeogenesis. We demonstrate that telomere dysfunction activates p53 which in turn binds and represses PGC-1α and PGC-1β promoters, thereby forging a direct link between telomere and mitochondrial biology. We propose that this telomere-p53-PGC axis contributes to organ and metabolic failure and to diminishing organismal fitness in the setting of telomere dysfunction.

Read more

PGC-1α Modulates Telomere Function and DNA Damage in Protecting against Aging-Related Chronic Diseases

An interesting paper that uses ALA to shore up telomerase activity, loss of telomeres inhibition of P53 expression and mitochondrial dysfunction in one go. They use ALA (alpha lipoic acid) to induce PGC-1α in this case though PGC1-alpha seems to be a potential target for intervention as I understand that ALA is difficult to deliver to cells. In this case this involves the vascular system and atherosclerosis.

http://www.cell.com/cell-reports/abstract/S2211-1247(15)00825-6

Short telomeres and Mitochondrial dysfunction are increasingly implicated as being closely linked as this 2012 Dephino paper demonstrates in the aging heart:

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3718635/

“On a mechanistic level, recent reports linking telomere dysfunction to metabolic and mitochondrial compromise provide a novel mechanism as to how dysfunctional telomeres can compromise cardiac function. This telomere-p53-PGC-mitochondrial axis aligns with many changes seen in aged hearts: impaired OXPHOS, decreased ATP generation, and increased ROS levels”


PGC-1α Deficiency Augments Vascular Aging and Atherosclerosis, Coinciding with Telomere Dysfunction and Shortening and DNA Damage through TERT Downregulation.

(A) The aortas from PGC-1α+/+ApoE−/− and PGC-1α−/−ApoE−/− mice (18-month-old males, standard diet, n = 5) were excised for SA-βG staining.

(B) The aortic arch from PGC-1α−/−ApoE−/− and control mice (18-month-old males, n = 5) was dissected for examination of atherosclerotic lesion formation.

Transhumanist Party Brings Life Extension Front and Center — an Interview with Zoltan Istvan

It’s not every day you get to sit down and have a one-on-one conversation with a United States presidential candidate, let alone one who is also a Transhumanist. TechEmergence recently had the opportunity to do just that during an interview with Zoltan Istvan, the 2016 presidential candidate for the newly formed Transhumanist party and author of the 2013 published The Transhumanist Wager.

If you follow the emerging trends in artificial intelligence, then you have already likely heard of “Transhumanism.” Oxford’s Nick Bostrom, in his 2003 book Ethical Issues for the 21st Century, defined Transhumanism as “a loosely defined movement…that promotes an interdisciplinary approach to understanding and evaluating the opportunities for enhancing the human condition and the human organism opened up by the advancement of technology.”

This philosophy could be a turning point in human evolution. But like all great movements, this one is seemingly slow to pick up a serious following (though perhaps in retrospect, we will comment on how quickly this direction moved society forward). Regardless, Zoltan Istvan is determined to usher in this transitional philosophy as a political player and advocate for human enhancement.

Fighting for Our Lives

How do you get the populace, and other governments, to listen to ideas that, by mainstream standards, buck tradition and fall on the extreme side of the socially-acceptable spectrum?

Extending human life to hundreds of years, genetic enhancements to prevent disease or enhance human senses or mental capacities, and the potential to “back up” our memories (or our consciousness itself) — these are not “normal” American political concerns — but they’re regular topics of debate among Transhumanists.

There never seems to be an easy answer. As terrible as the idea is in its ramifications, society at large is prone to those life-changing moments in history, the “Pearl Harbor moments”, which seem to evoke the most devastating and poignant calls to action on a grand scale. With the ominous discussions that have been taking place around AI recently, we can only bite our nails at the thought of an AI-induced tragedy – one from which we may not be able to recover. Istvan aims to bring the topics of AI, biotechnology and human enhancement to the forefront of public consideration in order to guide the technology for good, before it “goes rogue.”

The Transhumanist Wave

“Transhumanism is slowly starting to engulf everyone, it’s part of an exploding interest”, remarks Zoltan. “We’ve been talking life extension, bionic arms, telepathy for a while, but for most of the last 50 years it was sci-fi…but over (the last) 48 months many people have crossed over and said, this is real now.”

Indeed, all of these technologies – telepathy included – are a part of our present and near-future realities (or are at least being actively researched). Life extension is one of the most talked about crossovers. Istvan has a distinct philosophy on this issue. “150,000 people a day die. I think that’s completely needless. I think if we have the proper technology…increased development of life extension technologies…would be able to save huge amounts of people over a decade,” a number that would likely equate to hundreds of millions of lives.

Zoltan comments on the promotion of “productive life hours, happy life hours”. He explains that part of the Transhumanist mission is trying to get people to understand that dying is not a good thing, to overcome what he sees as a history of being “trained to die”. Benjamin Franklin certainly spoke a relative truth when he commented that the only things certain in life are “death and taxes”. While we may not be close to escaping taxes, perhaps death can, in time, be conquered to a great extent. With investment in the right technology, society might soon be able to expand life spans to 120 or even 150 years.

The investment required is substantial. One of Istvan’s main agendas is in trying to convince people that the life extension initiative is more important than “buying trinkets at Walmart”. In other words, we need to move from being a complacent, ever-present society to being a proactive, forward-thinking one in order for life-extension technology to advance.

To be sure, there are a number of billionaires interested in living indefinitely, but what does that mean for the rest of us? Would the common person ever be able to afford such “extensions”, or would these technologies become advanced and cheap enough in time that they become the norm for almost all? Whether we like it or not, Istvan insists the shift towards this technology is already happening. The Transhumanist party was formed to try and make that shift quicker.

Zoltan is so confident in the output of potential investment that he is advocating for one trillion dollars in life-extension science (he remarks that the worlds’ governments’ net worth is 400 trillion total, though this number could not be verified). “I’m sure we can change the industry,” Istvan comments, “governments are just not interested (now) in keeping people alive…it’s a true tragedy.” Harkening to the importance of life extension many times in the recent full interview, it became evident as one of the major thrusts of his initiatives as an aspiring president.

Technology flits by right under our noses as we stare into our mobile phones, yet the far-reaching ideas of its evolving presence are scary. Tinkering with the human condition is…well, scary. Istvan recognizes these very normal fears, but he is leading a party and movement that emphasizes the overwhelming benefits that technology can offer, particularly in the area of human enhancement.