Toggle light / dark theme

It seems more likely what you remove is more important than what you add with old blood.


The evidence is increasingly suggesting that dilution of pro-aging signals is why we are seeing rejuvenation when blood is exchanged between young and old animals. Forget transfusions the next step is to filter our own blood to promote health as we age.

#aging #crowdfundthecure

Read more

We are at the cusp of a stem cell revolution.

Understanding and harnessing these unique cells may unlock breakthroughs in longevity and therapeutic solutions to all kinds of chronic diseases and regenerative opportunities.

Last month, I took a trip down to the Stem Cell Institute in Panama City with Dr. Bob Hariri (co-Founder of Human Longevity Inc.) to get stem cell injections in my knee and shoulder as an alternative to reconstructive surgery.

Read more

Exercise is one of the best ways to slow down aging and its free too!


(Boston) — Older adults who experience good cardiac fitness may be also keeping their brains in good shape as well.

In what is believed to be the first study of its kind, older adults who scored high on cardiorespiratory fitness (CRF) tests performed better on memory tasks than those who had low CRF. Further, the more fit older adults were, the more active their brain was during learning. These findings appear in the journal Cortex. Difficulty remembering new information represents one of the most common complaints in aging and decreased memory performance is one of the hallmark impairments in Alzheimer’s disease.

Healthy young (18−31 years) and older adults (55−74 years) with a wide range of fitness levels walked and jogged on a treadmill while researchers assessed their cardiorespiratory fitness by measuring the ratio of inhaled and exhaled oxygen and carbon dioxide. These participants also underwent MRI scans which collected images of their brain while they learned and remembered names that were associated with pictures of unfamiliar faces.

(Phys.org) —Tufts University biologists using new, automated training and testing techniques have found that planarian flatworms store memory outside their brains and, if their heads are removed, can apparently imprint these memories on their new brains during regeneration.

The work, published online in the Journal of Experimental Biology, can help unlock the secrets of how memories can be encoded in living tissues, noted Michael Levin, Ph.D., Vannevar Bush professor of biology at Tufts and senior author on the paper.

“As and biomedicine advance, there’s a great need to better understand the dynamics of memory and the brain-body interface. For example, what will happen to stored memory if we replace big portions of aging brains with the progeny of fresh ?” said Levin, who directs the Center for Regenerative and Developmental Biology in Tufts’ School of Arts and Sciences.

Read more

The quest for the fountain of youth is as ancient as humanity itself. Now, it appears scientists may have found the source.

Using a process designed to “reprogram” normal adult cells into pluripotent stem cells—cells that can transform into many different kinds of cells—researchers have managed to boost the life spans of mice by up to 30% and rejuvenate some of their tissues.

The treatment did not change the cell’s genetic code, but rather chemical attachments on their DNA called epigenetic marks, responsible for regulating the genome and determining how active certain genes are.

Read more

Senolytics to remove senescent cells will deliver the first “repair” based approach to treat the aging process. This is the arrival of true rejuvenation biotechnology in the SENS model of damage repair.


Senescent cell removal with companies such as Unity, entering human clinical trials in the next 18 months will deliver the first true damage repair rejuevenation biotechnology. This will be the first “repair” approach to the aging process and one the SENS Research Foundation has been advocating for over a decade.

#aging #crowdfundthecure

Read more

This is probably important.


Scientists at The Scripps Research Institute (TSRI) have discovered a protein that fine-tunes the cellular clock involved in aging.

This novel , named TZAP, binds the ends of chromosomes and determines how long , the segments of DNA that protect chromosome ends, can be. Understanding telomere length is crucial because telomeres set the lifespan of cells in the body, dictating critical processes such as aging and the incidence of cancer.

“Telomeres represent the clock of a cell,” said TSRI Associate Professor Eros Lazzerini Denchi, corresponding author of the new study, published online today in the journal Science. “You are born with telomeres of a certain length, and every time a cell divides, it loses a little bit of the telomere. Once the telomere is too short, the cell cannot divide anymore.”