Toggle light / dark theme

Strategy to help cells get rid of disease-related debris

Tohoku University researchers have developed a strategy that could help cells get rid of disease-related debris. Further research could lead to treatments for neurodegenerative and metabolic diseases, Down syndrome, and maybe even aging-related diseases. The findings were published in the journal Molecular Cell.

Cells have a natural ability to routinely rid themselves of unnecessary or dysfunctional proteins and organelles. During this process of “,” debris are tagged with a compound called ubiquitin and then degraded within tiny cellular vacuoles. Autophagy is impaired in some cancers, and neurodegenerative and metabolic diseases, so scientists have been working to develop drugs that can regulate this process. However, little is known about the details of autophagy, such as how the cell knows which components to tag with ubiquitin.

In previous research, Hirokazu Arimoto, a chemical biologist at Tohoku University, and colleagues found that autophagy is initiated against invading streptococci bacteria when they are tagged with the nucleic acid guanine. The researchers wondered if guanine tagging could also initiate autophagy against other cellular components.

Irresponsible Marketing Surrounds Telomerase Human Trials in South America

Recently, Libella Gene Therapeutics has announced that it will be running a patient-paid trial in Colombia with an eye-watering $1 million USD price tag on enrollment.

Patient-paid trial likely to cause backlash

The topic of patient-paid trials often stirs up considerable debate among the research community, regulatory authorities, and the general public, with many people suggesting that it is unethical to expect patients to pay to participate in clinical trials. While this is a controversial issue, these trials are a legitimate way to test therapies that would otherwise struggle to reach the clinic due to cost constraints, and the data gathered by such trials can still be valuable.

For the November episode of the Journal Club, Dr. Oliver Medvedik will be reviewing a new study from a team of researchers including Professor George Church

The study saw the deployment of a multiple target gene therapy focused on 3 known longevity genes delivered via an adeno-associated virus. The focus was on mitigating T2 diabetes, heart failure, and kidney failure in mouse models with very positive results observed. Join us on Tuesday, 26th November, 1pm EDT on our Facebook page for the livestream show.

Breakthrough Gene Therapy Clinical Trial is the World’s First That Aims to Reverse 20 Years of Aging in Humans

Just one million dollars.


MANHATTAN, Kan., Nov. 21, 2019 /PRNewswire/ — Libella Gene Therapeutics, LLC (“Libella”) announces an institutional review board (IRB)-approved pay-to-play clinical trial in Colombia ( South America ) using gene therapy that aims to treat and ultimately cure aging. This could lead to Libella offering the world’s only treatment to cure and reverse aging by 20 years.

Why don’t we just stop the aging process?

A team of scientists at the University of Antwerp (Belgium) wants to stop the aging process. They are fascinated by uncovering longevity signatures at the tiny molecular level and are developing an intelligent nanomachine that lays the foundations for new therapies against aging and chronic diseases. Only ten conditions cause 75% of all mortalities. The top three of cardiovascular disease, diabetes, and cancer accounts for 50% of all mortalities. Are these chronic diseases age-related? Can we address them by targeting aging?

Scientists may have uncovered the fountain of youth in a mysterious molecule

Increases in life span are one of the greatest success stories of modern society. Yet, while most of us can expect to live longer, we are spending more years in ill health. Reducing this period of ill health at the end of life is the main aim of a group of scientists known as biogerontologists.

By studying aging in animals, including fruit flies, worms, and rodents, biogerontologists have identified biological phenomena involved with aging that all these organisms share. And some of these biological processes may also regulate aging in humans.

Scientists attempting to understand and improve the aging process have identified many molecules that appear to improve aging in these animals (although evidence in humans remains scant). These molecules include compounds found in grapes, apples, and even bacteria.

/* */