Toggle light / dark theme

Wireless power from 5G networks could replace batteries

A new way to harvest power from 5G networks could make many of the batteries that power our devices a thing of the past, researchers say.


An ATHENA group member holds an inkjet-printed prototype of a mm-wave harvester. The researchers envision a future where IoT devices will be powered wirelessly over 5G networks. (Credit: Christopher Moore/Georgia Tech)

The researchers have developed a flexible Rotman lens-based rectifying antenna (rectenna) system capable, for the first time, of millimeter-wave harvesting in the 28-GHz band. The Rotman lens is key for beamforming networks and is frequently used in radar surveillance systems to see targets in multiple directions without physically moving the antenna system.

Harnessing light to enable next-generation microwave systems

Electronic oscillators lie at the heart of virtually all microelectronic systems, generating the clock signals used in digital electronics and the precise frequencies that enable radio frequency (RF) sensors and communications. While an ideal oscillator provides a perfect signal at a single frequency, imperfections degrade the spectral purity of real-world components.

Such impairments, broadly quantified as phase noise, ultimately limit the performance of many military radars and commercial 5G systems. The issue is becoming increasingly burdensome as the airways become more congested and defense needs evolve.

Fun While It Lasted, Falcon 9 Telemetry Now Encrypted

A few weeks back we brought word that Reddit users [derekcz] and [Xerbot] had managed to receive the 2232.5 MHz telemetry downlink from a Falcon 9 upper stage and pull out some interesting plain-text strings. With further software fiddling, the vehicle’s video streams were decoded, resulting in some absolutely breathtaking shots of the rocket and its payload from low Earth orbit.

Unfortunately, it looks like those heady days are now over, as [derekcz] reports the downlink from the latest Falcon 9 mission was nothing but intelligible noise. Since the hardware and software haven’t changed on his side, the only logical conclusion is that SpaceX wasn’t too happy about radio amateurs listening in on their rocket and decided to employ some form of encryption.

Since this data has apparently been broadcast out in the clear for nearly a decade before anyone on the ground noticed, it’s easy to see this as an overreaction. After all, what’s the harm in a few geeks with hacked together antennas getting a peek at a stack of Starlink satellites? [derekcz] even mused that allowing hobbyists to capture these space views might earn the company some positive buzz, something Elon Musk never seems to get enough of.

SpaceX lands booster at sea in amazing rocket cam view

SpaceX’s Falcon 9 first stage landed on the “Of Course I Still Love You” drone ship in the Atlantic Ocean on April 7, 2021 shortly after launching 60 Starlink satellites. It was the “79th recovery of a orbital-class rocket,” according to SpaceX. See the rocket launch: https://www.space.com/spacex-starlink-23-satellite-mission-launch-rocket-landing.

Credit: SpaceX

Stop Calling Everything AI, Machine-Learning Pioneer Says

Michael I. Jordan explains why today’s artificial-intelligence systems aren’t actually intelligent.


THE INSTITUTE Artificial-intelligence systems are nowhere near advanced enough to replace humans in many tasks involving reasoning, real-world knowledge, and social interaction. They are showing human-level competence in low-level pattern recognition skills, but at the cognitive level they are merely imitating human intelligence, not engaging deeply and creatively, says Michael I. Jordan, a leading researcher in AI and machine learning. Jordan is a professor in the department of electrical engineering and computer science, and the department of statistics, at the University of California, Berkeley.

He notes that the imitation of human thinking is not the sole goal of machine learning—the engineering field that underlies recent progress in AI—or even the best goal. Instead, machine learning can serve to augment human intelligence, via painstaking analysis of large data sets in much the way that a search engine augments human knowledge by organizing the Web. Machine learning also can provide new services to humans in domains such as health care, commerce, and transportation, by bringing together information found in multiple data sets, finding patterns, and proposing new courses of action.

“People are getting confused about the meaning of AI in discussions of technology trends—that there is some kind of intelligent thought in computers that is responsible for the progress and which is competing with humans,” he says. “We don’t have that, but people are talking as if we do.”

First Look Over the Event Horizon of Singularity: Your Future Life as a Cyberhuman

The lives of infomorphs (or ‘cyberhumans’) who have no permanent bodies but possess near-perfect information-handling abilities, will be dramatically different from ours. Infomorphs will achieve the ultimate morphological freedom. Any infomorph will be able to have multiple cybernetic bodies which can be assembled and dissembled at will by nanobots in the physical world if deemed necessary, otherwise most time will be spent in the multitude of virtual bodies in virtual enviro… See More.


“I am not a thing a noun. I seem to be a verb, an evolutionary process an integral function of the Universe.” Buckminster Fuller

The term ‘Infomorph’ was first introduced in “The Silicon Man” by Charles Platt in 1991 and later popularized by Alexander Chislenko in his paper “Networking in the Mind Age”: “The growing reliance of system connections on functional, rather than physical, proximity of their elements will dramatically transform the notions of personhood and identity and create a new community of distributed ‘infomorphs’ advanced informational entities that will bring the ongoing process of liberation of functional structures from material dependence to its logical conclusions. The infomorph society will be built on new organizational principles and will represent a blend of a superliquid economy, cyberspace anarchy and advanced consciousness.”

The new post-Singularity system will inherit many of today’s structures but at the same time will develop new traits beyond our current human comprehension. The ability of future machines and posthumans alike to instantly transfer knowledge and directly share experiences with each other will lead to evolution of intelligence from the hive ontology of individual biological minds to the global hyperconnected society of digital minds.

Researchers harvest energy from radio waves to power wearable devices

From microwave ovens to Wi-Fi connections, the radio waves that permeate the environment are not just signals of energy consumed but are also sources of energy themselves. An international team of researchers, led by Huanyu “Larry” Cheng, Dorothy Quiggle Career Development Professor in the Penn State Department of Engineering Science and Mechanics, has developed a way to harvest energy from radio waves to power wearable devices.

The researchers recently published their method in Materials Today Physics.

According to Cheng, current energy sources for wearable health-monitoring devices have their place in powering sensor devices, but each has its setbacks. Solar power, for example, can only harvest energy when exposed to the sun. A self-powered triboelectric can only harvest energy when the body is in motion.

Leveraging the 5G network to wirelessly power IoT devices

Researchers at the Georgia Institute of Technology have uncovered an innovative way to tap into the over-capacity of 5G networks, turning them into “a wireless power grid” for powering Internet of Things (IoT) devices that today need batteries to operate.

The Georgia Tech inventors have developed a flexible Rotman lens-based rectifying antenna (rectenna) system capable, for the first time, of millimeter-wave harvesting in the 28-GHz band. (The Rotman lens is key for beamforming networks and is frequently used in radar surveillance systems to see targets in multiple directions without physically moving the antenna system.)

But to harvest enough power to supply low-power devices at long ranges, large aperture antennas are required. The problem with large antennas is they have a narrowing field of view. This limitation prevents their operation if the antenna is widely dispersed from a 5G base station.

/* */