Toggle light / dark theme

DARPA announces a new type of cryptography to protect the Big Tech firm profits from the dawn of quantum computers and allow backdoor access into 3 trillion internet-connected devices.

by Raul Diego

The U.S. Military-Industrial complex is sprinting on a chariot to shore up the encryption space before the next era of computation upends the entire digital edifice built on semiconductors and transistors. But, the core of the effort is protecting markets for Big Tech and all of its tentacles, which stand to lose years or even decades of profits should the new tech be rolled out too quickly.

Artificial intelligence applications are popping up everywhere these days, from our Internet browsing to smart homes and self-driving cars. Now a group of researchers is launching a new AI-led study that will collect data from recently released prisoners. The ultimate goal of the project is to identify – and, ostensibly, one day eliminate – the psychological and physiological triggers that cause recidivism among parolees.

According to project-leads Marcus Rogers and Umit Karabiyik, the resulting data will assist them in conducting a forensic psychological analysis. While the monitoring will be gauged in intervals – not real-time – they believe it will help build a profile of the risky behaviors and stressful triggers that recent parolees face when returning to the outside world.

Scientists at University College London have achieved a data transmission rate of 178 terabits per second (tbps) – a speed at which you could download the entire Netflix library in less than a second.

The breakthrough involved a collaboration between University College London (UCL) and two companies, Xtera and KDDI Research. The technology used a much wider range of colours of light, or wavelengths, than is typically found in optical fibre. Most of today’s infrastructure has a limited spectrum bandwidth of 4.5THz, with 9THz commercial systems entering the market. The researchers in this study, however, used a bandwidth of 16.8THz.

The hyperfast speed – around three million times faster than conventional broadband – was made possible by combining different “amplifier” technologies to boost signals over this wider bandwidth, and then maximised by developing new Geometric Shaping (GS) constellations. The latter are signal combinations that make best use of the phase, brightness and polarisation properties of light, manipulating the properties of each individual wavelength.

Researchers have fashioned ultrathin silicon nanoantennas that trap and redirect light, for applications in quantum computing, LIDAR and even the detection of viruses.

Light is notoriously fast. Its speed is crucial for rapid information exchange, but as light zips through materials, its chances of interacting and exciting atoms and molecules can become very small. If scientists can put the brakes on light particles, or photons, it would open the door to a host of new technology applications.

Now, in a paper published on August 17, 2020, in Nature Nanotechnology, Stanford scientists demonstrate a new approach to slow light significantly, much like an echo chamber holds onto sound, and to direct it at will. Researchers in the lab of Jennifer Dionne, associate professor of materials science and engineering at Stanford, structured ultrathin silicon chips into nanoscale bars to resonantly trap light and then release or redirect it later. These “high-quality-factor” or “high-Q” resonators could lead to novel ways of manipulating and using light, including new applications for quantum computing, virtual reality and augmented reality; light-based WiFi; and even the detection of viruses like SARS-CoV-2.

The internet has transformed most areas of our lives over the last few decades, and the technology keeps improving: researchers just set a new record for data transmission rates, logging an incredible speed of 178 terabits per second (Tbps).

That’s around a fifth faster than the previous record, set by a team of researchers in Japan, and roughly twice as fast as the best internet available today.

With 4K movies about 15GB in size, you could download about 1,500 of them in a single second at the new speed.

The world’s fastest data transmission rate has been achieved by a team of University College London engineers who achieved internet transmission speed a fifth faster than the previous record.

Working with two companies, Xtera and KDDI Research, the research team led by Dr. Lidia Galdino (UCL Electronic & Electrical Engineering), achieved a data transmission rate of 178 terabits a second (178,000,000 megabits a second) – a speed at which it would be possible to download the entire Netflix library in less than a second.

The record, which is double the capacity of any system currently deployed in the world, was achieved by transmitting data through a much wider range of colors of light, or wavelengths, than is typically used in optical fiber. (Current infrastructure uses a limited spectrum bandwidth of 4.5THz, with 9THz commercial bandwidth systems entering the market, whereas the researchers used a bandwidth of 16.8THz.)