Toggle light / dark theme

The human brain is the most complex and powerful computer in the world — and, as far as we know, the universe.

Today’s most sophisticated artificial intelligence (AI) algorithms are only just beginning to offer a partial simulation of a very limited number of the brain’s functions. AI is, however, much faster when it comes to certain operations like mathematics and language.

This means it comes as no surprise that a great deal of thought and research has gone into combining the two. The idea is to use AI to better understand the workings of the brain and eventually create more accurate simulations of it. One day, it may also help us to create systems with the complexity and diversity of… More.


Explore the thrilling convergence of AI and the human brain as cutting-edge technologies like Neuralink blur the lines between science fiction and reality.

Experience the captivating world of Quantum Computing in AI through this thrilling video! Delve into the groundbreaking realm of Quantum Computers and its revolutionary synergy with Artificial Intelligence, leading us into an era of technological revolution.
The first part of the video unravels the enigmatic concept of Quantum Computing, explaining its complex principles in a way that even beginners can understand. Watch the video to discover the magic of quantum bits (qubits) and superposition as they challenge the norms of classical computing.
Are you curious about what Quantum Supremacy is? Or what Quantum Computing in AI can truly achieve? This intriguing section showcases the extraordinary capabilities of these computing marvels, delving into the fascinating world of quantum supremacy and how it empowers AI.
Moving forward, embark on a journey into Quantum Machine Learning, a cutting-edge AI paradigm that combines Quantum Computing with Artificial Intelligence. Prepare to be amazed by its ability to push the boundaries of data processing, learning, and prediction and embarking revolution in Neural Network and Natural Language Processing. The future of quantum AI is revolutionary; you should not miss it!
The video does not stop there! We also explore real-world applications of Quantum AI, demonstrating how this technology is revolutionizing industries like healthcare, cybersecurity, finance, education and more, with unprecedented efficiency and precision.
The video sheds light on Quantum AI’s potential to solve once-unthinkable problems in areas such as molecular simulation, precise optimization, predictions, and personalization. We discover how AI with Quantum Computing solve challenges which were thought impossible to crack.
This video is a comprehensive resource for anyone interested by Quantum Computing, AI, and their synergy. Join us as we embark on this exciting journey into the revolutionary synergy between two technologies. Whether you’re a quantum computing enthusiast, an AI lover, or simply enjoy tech insights, don’t forget to Like, Comment, and Subscribe to stay informed about the latest trends!
#quantumcomputing.
#artificalintelligence.
#ai.
#futureofai.
#technology.
Chapters.
0:00-Introduction.
0:50-Simple Concepts of Quantum Computing and AI
2:30-Ways How will Quantum computing affect AI?
2:34–1) Improvement in Machine Learning Algorithm.
4:04–2) Enhanced Neural Network.
5:15–3) Advancing Natural Language Processing.
6:27–4) Solving Complex Issues.
7:02-Usability of Quantum AI Computing.
7:23–1) Fact-Checkers for AI Chatbots.
8:08–2) Benefits for Life Science.
8:50–3) Cybersecurity.
9:21–4) Impact on Education.
10:08–5) Autonomous Vehicle.
11:01–6) Logistics Industry.
11:55–7) Climate Change.
12:52-ConclusionSubscribe for more content in the fascinating field of Artificial Intelligence.
*******************
Welcome to AI TechXplorer, your premier destination for cutting-edge insights into AI trends and technology. As a channel dedicated to the forefront of artificial intelligence, we delve deep into the world of AI, latest AI trends and technology, providing research-driven insights into development of AI tools, platforms, AI news and updates in artificial general intelligence (AGI) and robotics.
Our commitment to delivering quality content begins with our rigorous research approach. Understanding that AI can be an intimidating field for newcomers, we make it our mission to provide clear and accessible explanations. Whether you are a seasoned AI enthusiast or someone who has just discovered the world of AI, our videos break down complex concepts, developments, and breakthroughs into digestible and relatable explanations. We believe that knowledge should be inclusive and approachable, and we are dedicated to making AI understandable for all.
We keep a keen eye on the latest advancements in AI, ensuring that you stay informed about the cutting-edge developments and their practical applications. By highlighting the significance of these advancements within our society, we strive to bridge the gap between AI and its real-world implications, ultimately fostering a greater appreciation for the transformative potential of AI.
🔔 Join us at AI AI TechXplorer as we embark on a journey through the realms of artificial intelligence. Together, we will uncover the latest AI trends, explore groundbreaking technologies, and unravel the mysteries of artificial general intelligence. Subscribe to our channel today and be part of the ever-evolving world of AI. 🔔.

The advancement of robotics and artificial intelligence (AI) has paved the way for a new era in warfare. Gone are the days of manned ships and traditional naval operations. Instead, the US Navy’s Task Force 59 is at the forefront of integrating AI and robotics into naval operations. With a fleet of autonomous robot ships, the Navy aims to revolutionize the way wars are fought at sea.

The Persian Gulf serves as a testing ground for Task Force 59’s fleet of robot ships. These unmanned vessels, ranging from solar-powered kayaks to surfboard-style boats, are equipped with state-of-the-art technology. Their purpose is to act as the eyes and ears of the Navy, collecting data through cameras, radar, and hydrophones. Pattern-matching algorithms help differentiate between oil tankers and potential threats like smugglers.

One particular vessel, the Triton, stands out with its ability to submerge for extended periods. This feature allows it to evade enemy detection and resurface when it is safe to do so. The Triton can stay submerged for up to five days, utilizing this time to recharge its batteries and transmit valuable information back to base.

We often believe computers are more efficient than humans. After all, computers can complete a complex math equation in a moment and can also recall the name of that one actor we keep forgetting. However, human brains can process complicated layers of information quickly, accurately, and with almost no energy input: recognizing a face after only seeing it once or instantly knowing the difference between a mountain and the ocean.

These simple human tasks require enormous processing and energy input from computers, and even then, with varying degrees of accuracy.

Creating -like computers with minimal requirements would revolutionize nearly every aspect of modern life. Quantum Materials for Energy Efficient Neuromorphic Computing (Q-MEEN-C)—a nationwide consortium led by the University of California San Diego—has been at the forefront of this research.

Recent research published in Nature Communications has used machine learning algorithms to find new compounds that can eliminate senescent cells [1].

Senolytics are molecules that destroy senescent cells. Only a small number of such molecules have been identified, and only two have shown efficacy in clinical trials: dasatinib and quercetin in combination [2]. One of the biggest challenges is that senolytics often only work against specific types of cells. Additionally, some senolytics may work well for one cell type while being toxic to other, non-senescent cell types [3].

There is also a group of senolytics that are used in cancer therapies. However, most of them target pathways that are mutated in cancer. Therefore, they cannot be used as therapeutic agents in different contexts.

Summary.


What will artificial intelligence do to industries and jobs? For a preview, look to the finance industry which has been incorporating data and algorithms for a long time, and which is always a canary in the coal mine for new technology. The experience of finance suggests that AI will transform some industries (sometimes very quickly) and that it will especially benefit larger players. But it may not leave the overall system better off.

Page-utils class= article-utils—vertical hide-for-print data-js-target= page-utils data-id= tag: blogs.harvardbusiness.org, 2007/03/31:999.361588 data-title= What the Finance Industry Tells Us About the Future of AI data-url=/2023/08/what-the-finance-industry-tells-us-about-the-future-of-ai data-topic= Business and society data-authors= Mihir A. Desai data-content-type= Digital Article data-content-image=/resources/images/article_assets/2023/08/Aug23_09_5277464-383x215.jpg data-summary=

The sector is a test case for how new technology will play out.

Through a scattering medium such as ground glass? Traditionally, this would be considered impossible. When light passes through an opaque substance, the information carried within the light becomes “jumbled up”, almost as if undergoes complex encryption.

Recently, a remarkable scientific breakthrough by Professor Choi Wonshik’s team from the IBS Center for Molecular Spectroscopy and Dynamics (IBS CMSD) has unveiled a method to leverage this phenomenon in the fields of optical computing and machine learning.

Machine learning is a subset of artificial intelligence (AI) that deals with the development of algorithms and statistical models that enable computers to learn from data and make predictions or decisions without being explicitly programmed to do so. Machine learning is used to identify patterns in data, classify data into different categories, or make predictions about future events. It can be categorized into three main types of learning: supervised, unsupervised and reinforcement learning.

A team of researchers from British universities has trained a deep learning model that can steal data from keyboard keystrokes recorded using a microphone with an accuracy of 95%.

When Zoom was used for training the sound classification algorithm, the prediction accuracy dropped to 93%, which is still dangerously high, and a record for that medium.

Such an attack severely affects the target’s data security, as it could leak people’s passwords, discussions, messages, or other sensitive information to malicious third parties.

What you get, starting out in this video, is that algorithms impact our lives in, as CSAIL grad student Sandeep Silwal puts it, “silent ways”

Silwal uses a simple example – maps – in discussing what he calls the “marriage of provable algorithm design and machine learning.”

Lots of people, he notes, want to move from the area around MIT, south across the Charles to Fenway Park, to see the Red Sox.

That sort of fact could inform the thinking about how to program algorithms. For example, Silwal mentions how you can analyze data results to identify the most visited websites on the Internet – and direct focus accordingly.

“We use (algorithms) to compute fundamental things about us,” he says. “And… More.

Quantum entanglement is one of the most intriguing and perplexing phenomena in quantum physics. It allows physicists to create connections between particles that seem to violate our understanding of space and time.

This video discusses what quantum entanglement really is, and the experiments that help us understand it. The results of these experiments have applications in new technologies that will forever change our world.

Join Katie Mack, Perimeter Institute’s Hawking Chair in Cosmology and Science Communication, over 10 short forays into the weird, wonderful world of quantum science. Episodes are published weekly, subscribe to our channel so you don’t miss an update.

Want to learn more about quantum concepts? Visit https://perimeterinstitute.ca/quantum-101-quantum-science-explained to access free resources.

Follow Perimeter:
Twitter: https://twitter.com/Perimeter.
LinkedIn: https://www.linkedin.com/company/perimeter-institute/
Instagram: https://www.instagram.com/perimeterinstitute/
Facebook: https://www.facebook.com/pioutreach.

Perimeter Institute (charitable registration number 88,981 4323 RR0001) is the world’s largest independent research hub devoted to theoretical physics, created to foster breakthroughs in the fundamental understanding of our universe, from the smallest particles to the entire cosmos. Be part of the equation: https://perimeterinstitute.ca/donate