Toggle light / dark theme

Researchers have crafted an artificial intelligence (AI) system capable of deciphering fragments of ancient Babylonian texts. Dubbed the “Fragmentarium,” the algorithm holds the potential to piece together some of the oldest stories ever written by humans, including the Epic of Gilgamesh.

The work comes from a team at Ludwig Maximilian University in Germany who have been attempting to digitize every surviving Babylonian cuneiform tablet since 2018.

The problem with understanding Babylonian texts is that the narratives are written on clay tablets, which today exist only in countless fragments. The fragments are stored at facilities that are continents away from each other, such as the British Museum in London and the Iraq Museum in Baghdad.

Robotic systems have become increasingly sophisticated over the past decades, improving both in terms of precision and capabilities. This is gradually facilitating the partial automation of some surgical and medical procedures.

Researchers at Tsinghua University have recently developed a soft robotic tentacle that could potentially be used to improve the efficiency of some standard medical procedures. This tentacle, introduced in IEEE Transactions on Robotics, is controlled through their novel control algorithm, together with the so-called active cooling for , the actuating candidate for the robot.

“A neurosurgeon doctor one day came to our lab and asked about the possibility of developing a soft, controllable catheter for him to assist him in his neurosurgeries,” Huichan Zhao, one of the researchers who carried out the study, told Tech Xplore. “He would like this soft catheter to be extremely safe to the surroundings and be able to bend to different directions by a . Starting from these requirements, we developed a soft robotic tentacle.”

Humans are innately able to reason about the behaviors of different physical objects in their surroundings. These physical reasoning skills are incredibly valuable for solving everyday problems, as they can help us to choose more effective actions to achieve specific goals.

Some computer scientists have been trying to replicate these reasoning abilities in (AI) , to improve their performance on . So far, however, a reliable approach to train and assess the physical reasoning capabilities of AI algorithms has been lacking.

Cheng Xue, Vimukthini Pinto, Chathura Gamage, and colleagues, a team of researchers at the Australian National University, recently introduced Phy-Q, a new designed to fill this gap in the literature. Their testbed, introduced in a paper in Nature Machine Intelligence, includes a series of scenarios that specifically assess an AI agent’s physical reasoning capabilities.

Seminar summary: https://foresight.org/summary/bioelectric-networks-taming-th…-medicine/
Program & apply to join: https://foresight.org/biotech-health-extension-program/

Foresight Biotech & Health Extension Meeting sponsored by 100 Plus Capital.

Michael Levin, Tufts Center for Regenerative and Developmental Biology.
Bioelectric Networks: Taming the Collective Intelligence of Cells for Regenerative Medicine.

Michael Levin, Distinguished Professor in the Biology department and Vannevar Bush Chair, serves as director of the Tufts Center for Regenerative and Developmental Biology. Recent honors include the Scientist of Vision award and the Distinguished Scholar Award. His group’s focus is on understanding the biophysical mechanisms that implement decision-making during complex pattern regulation, and harnessing endogenous bioelectric dynamics toward rational control of growth and form. The lab’s current main directions are:

A team of researchers have come up with a machine learning-assisted way to detect the position of shapes including the poses of humans to an astonishing degree — using only WiFi signals.

In a yet-to-be-peer-reviewed paper, first spotted by Vice, researchers at Carnegie Mellon University came up with a deep learning method of mapping the position of multiple human subjects by analyzing the phase and amplitude of WiFi signals, and processing them using computer vision algorithms.

“The results of the study reveal that our model can estimate the dense pose of multiple subjects, with comparable performance to image-based approaches, by utilizing WiFi signals as the only input,” the team concluded in their paper.

Artificial intelligence (AI) tools have achieved promising results on numerous tasks and could soon assist professionals in various settings. In recent years, computer scientists have been exploring the potential of these tools for detecting signs of different physical and psychiatric conditions.

Depression is one of the most widespread psychiatric disorders, affecting approximately 9.5% of American adults every year. Tools that can automatically detect signs of depression might help to reduce suicide rates, as they would allow doctors to promptly identify people in need of psychological support.

Researchers at Jinhua Advanced Research Institute and Harbin University of Science and Technology have recently developed a deep learning algorithm that could detect depression from a person’s speech. This model, introduced in a paper published in Mobile Networks and Applications, was trained to recognize emotions in by analyzing different relevant features.

Quantum sensing represents one of the most promising applications of quantum technologies, with the aim of using quantum resources to improve measurement sensitivity. In particular, sensing of optical phases is one of the most investigated problems, considered key to developing mass-produced technological devices.

Optimal usage of quantum sensors requires regular characterization and calibration. In general, such calibration is an extremely complex and resource-intensive task—especially when considering systems for estimating multiple parameters, due to the sheer volume of required measurements as well as the computational time needed to analyze those measurements. Machine-learning algorithms present a powerful tool to address that complexity. The discovery of suitable protocols for algorithm usage is vital for the development of sensors for precise quantum-enhanced measurements.

A particular type of machine-learning algorithm known as “reinforcement learning” (RL) relies on an intelligent agent guided by rewards: Depending on the rewards it receives, it learns to perform the right actions to achieve the desired optimization. The first experimental realizations using RL algorithms for the optimization of quantum problems have been reported only very recently. Most of them still rely on prior knowledge of the model describing the system. What is desirable is instead a completely model-free approach, which is possible when the agent’s reward does not depend on the explicit system model.

Quantum simulations of the hydroxide anion and hydroxyl radical are reported, employing variational quantum algorithms for near-term quantum devices. The energy of each species is calculated along the dissociation curve, to obtain information about the stability of the molecular species being investigated. It is shown that simulations restricted to valence spaces incorrectly predict the hydroxyl radical to be more stable than the hydroxide anion. Inclusion of dynamical electron correlation from nonvalence orbitals is demonstrated, through the integration of the variational quantum eigensolver and quantum subspace expansion methods in the workflow of N-electron valence perturbation theory, and shown to correctly predict the hydroxide anion to be more stable than the hydroxyl radical, provided that basis sets with diffuse orbitals are also employed.

Diffusion models have recently produced outstanding results on various generating tasks, including the creation of images, 3D point clouds, and molecular conformers. Ito stochastic differential equations (SDE) are a unified framework that can incorporate these models. The models acquire knowledge of time-dependent score fields through score-matching, which later directs the reverse SDE during generative sampling. Variance-exploding (VE) and variance-preserving (VP) SDE are common diffusion models. EDM offers the finest performance to date by expanding on these compositions. The existing training method for diffusion models can still be enhanced, despite achieving outstanding empirical results.

The Stable Target Field (STF) objective is a generalized variation of the denoising score-matching objective. Particularly, the high volatility of the denoising score matching (DSM) objective’s training targets can result in subpar performance. They divide the score field into three regimes to comprehend the cause of this volatility better. According to their investigation, the phenomenon mostly occurs in the intermediate regime, defined by various modes or data points having a similar impact on the scores. In other words, under this regime, it is still being determined where the noisy samples produced throughout the forward process originated. Figure 1(a) illustrates the differences between the DSM and their proposed STF objectives.

Figure 1: Examples of the DSM objective’s and our suggested STF objective’s contrasts.