Toggle light / dark theme

New Study shows how Salmonella Tricks Gut Defenses to cause Infection

A new UC Davis Health study has uncovered how Salmonella bacteria, a major cause of food poisoning, can invade the gut even when protective bacteria are present. The research, published in the Proceedings of the National Academy of Sciences, explains how the pathogen tricks the gut environment to escape the body’s natural defenses.

The digestive system is home to trillions of bacteria, many of which produce short-chain fatty acids (SCFAs) that help fight harmful pathogens. But Salmonella manages to grow and spread in the gut, even though these protective compounds are present. The study asks: How does Salmonella get around this defense?

“We knew that Salmonella invades the small intestine, although it is not its primary site of replication. The colon is,” said the lead author of the study Andreas Bäumler is a UC Davis distinguished professor and vice chair of research in the Department of Medical Microbiology and Immunology.

Exercise Boosts Memory for 24 Hours

Summary: New research reveals that the cognitive boost from moderate to vigorous exercise lasts up to the next day, enhancing memory performance in adults aged 50 to 83. The study also found that adequate sleep—particularly deep, slow-wave sleep—adds to these benefits.

Conversely, prolonged sedentary time was linked to poorer working memory the following day. These findings highlight the importance of daily physical activity and quality sleep for maintaining cognitive health, especially in older adults.

Brain-Computer Interface: No Open Brain Surgery Required 🧠

Synchron has developed a Brain-Computer Interface that uses pre-existing technologies such as the stent and catheter to allow insertion into the brain without the need for open brain surgery.

Read the CNET article for more info:
You Might Not Need Open Brain Surgery to Get Mind Control https://cnet.co/3sZ7k67

0:00 Intro.
0:25 History of Brain Chip Implants.
0:44 About Synchron.
0:54 How Synchron implants the interface.
1:55 How brain patterns transmit signals.
2:50 Risks and Concerns.
3:50 Patients and Clinical Testing.
4:25 Brain Health Monitoring.
5:04 Synchron Switch Price.

Never miss a deal again! See CNET’s browser extension 👉 https://bit.ly/3lO7sOU
Check out CNET’s Amazon Storefront: https://www.amazon.com/shop/cnet?tag=lifeboatfound-20.
Follow us on TikTok: / cnetdotcom.
Follow us on Instagram: / cnet.
Follow us on Twitter: / cnet.
Like us on Facebook: / cnet.

#WhatTheFuture #Synchron #BCI

Bacancy Launches AI-Driven MedPreGPT to to Enhance Prescription Accuracy

Bacancy is proud to announce the launch of a new AI tool, MedPreGPT, to help doctors with medicine prescriptions. This system enables doctors who all are using it for internal purposes to give accurate prescription recommendations privately without wasting any time. Compared to AI models like ChatGPT, this tool is specially trained with vast medical data and makes relevant suggestions. This innovative tool is made to enhance patient care, reduce human errors, and streamline the prescription process.

Doctors are only humans and they indeed work under intense work pressure and workload. Mistakes can happen in such an environment. Today’s healthcare providers use ChatGPT and Google’s Gemini for medicine recommendations, which is not completely wrong, but those tools might give false information. Bacancy has recognized the problem and found MedPreGPT to give accurate medical prescriptions.

The following are features of MedPreGPT Provides AI-based prescription recommendations according to symptoms and history. It is integrated with electronic health records (EHRs) for workflow ease. It provides multilingual support for healthcare professionals across the world Provides healthcare providers with updates in real time, regarding the latest clinical guidelines and drug interactions to ensure true care.

Citation tool offers a new approach to trustworthy AI-generated content

Chatbots can wear a lot of proverbial hats: dictionary, therapist, poet, all-knowing friend. The artificial intelligence models that power these systems appear exceptionally skilled and efficient at providing answers, clarifying concepts, and distilling information. But to establish trustworthiness of content generated by such models, how can we really know if a particular statement is factual, a hallucination, or just a plain misunderstanding?

In many cases, AI systems gather external information to use as context when answering a particular query. For example, to answer a question about a medical condition, the system might reference recent research papers on the topic. Even with this relevant context, models can make mistakes with what feels like high doses of confidence. When a model errs, how can we track that specific piece of information from the context it relied on — or lack thereof?

To help tackle this obstacle, MIT Computer Science and Artificial Intelligence Laboratory (CSAIL) researchers created ContextCite, a tool that can identify the parts of external context used to generate any particular statement, improving trust by helping users easily verify the statement.


The ContextCite tool from MIT CSAIL can find the parts of external context that a language model used to generate a statement. Users can easily verify the model’s response, making the tool useful in fields like health care, law, and education.

Next-Generation Size Selection for Optimized Long-Read Sequencing Workflow

All DNA is prone to fragmentation, whether it is derived from a biological matrix or created during gene synthesis; thus, any DNA sample will contain a range of fragment sizes. To really exploit the true benefits of long read sequencing, it is necessary to remove these shorter fragments, which might other wise be sequenced preferentially.

DNA size selection can exclude short fragments, maximizing data yields by ensuring that those fragments with the most informational content are not blocked from accessing detection centers (for example, ZMWs) by shorter DNA fragments.

Next-generation size-selection solutions Starting with clean, appropriate-length fragments for HiFi reads can accelerate research by reducing the computation and data processing time needed post-sequencing. Ranger Technology from Yourgene Health is a patent-protected process for automating electrophoresis-based DNA analysis and size selection. Its fluorescence machine vision system and image analysis algorithms provide real-time interpretation of the DNA separation process.

The AI Revolution in Medicine

Artificial intelligence is quickly becoming an integral tool in health care. In our new collection, the editors of NEJM AI provide insight into how the use of AI in clinical practice can improve patient care and outcomes.

Featured in this collection:

GPT versus Resident Physicians — A Benchmark Based on Official Board Scores Artificial Intelligence–Powered Rapid Identification of ST-Elevation Myocardial Infarction via Electrocardiogram (ARISE) — A Pragmatic Randomized Controlled Trial Use of GPT-4 to Diagnose Complex Clinical Cases.

Download now.


NEJM AI is a monthly journal from NEJM Group that explores innovative applications of artificial intelligence and machine learning in clinical medicine, serving as a trusted guide to help you navigate the AI revolution.

Access your copy of this valuable collection and discover how AI is transforming and advancing care.

Nivolumab against lung cancer: How is the gut–lung axis involved?

The study of the gut microbiome, which is the total of all the microbes living in the intestines, has been shown to not only play an important role in the health of the bowel itself, but also in the health of distant organs such as the lungs. Lung cancer is one of the diseases that is often difficult to treat successfully. Rohan Kubba from the California Northstate University, Elk Grove, USA, believes that by studying the gut microbiome he can understand more about how anti-cancer treatments affect the gut–lung axis, and how the variations found in patient microbe populations are associated with treatment outcomes.

The microbiome consists of thousands of species including bacteria, fungi, and viruses (microbiota). Each person has an entirely unique network of microbiota, most of them living in their gut but also on the skin, mouth, and lungs. Each person’s microbiome is formed by a combination of factors, including but not limited to exposure to microorganisms during natural birth, consuming their mother’s milk, and later on in life, environmental factors such as diet.

Gut microbiome and disease.

/* */