Toggle light / dark theme

‘Janus’ nanorods convert light to heat that can destroy pollutants in water

With a new nanoparticle that converts light to heat, a team of researchers has found a promising technology for clearing water of pollutants.

Trace amounts of contaminants such as pesticides, pharmaceuticals and perfluorooctanoic acid in drinking water sources have posed significant health risks to humans in recent years. These micropollutants have eluded conventional treatment processes, but certain chemical processes that typically involve ozone, hydrogen peroxide or UV light have proven effective. These processes, however, can be expensive and energy-intensive.

A new nanoparticle created by Yale University engineers as part of an effort for the Rice-based Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT) could lead to technologies that get around those limitations. The particle is described in a study published this week in the Proceedings of the National Academy of Sciences.

Israeli AI firm that offers early COVID-19 detection gets FDA approval

CLEW, an Israeli medtech firm specializing in real-time AI analytics platforms, received approval from the United States Food and Drug Administration (FDA) for its “Predictive Analytics Platform in Support of COVID-19 Patients,” the company announced Tuesday.

The Intensive Care Unit (ICU) solution was given Emergency Use Authorization (EUA) by the FDA so that it may be implemented within the United States’ health system as soon as possible.

Cutting-edge research shows that making art benefits the brain

In other words, practicing the arts can be used to build capacity for managing one’s mental and emotional well-being.

Neuroesthetics — With recent advances in biological, cognitive, and neurological science, there are new forms of evidence on the arts and the brain. For example, researchers have used biofeedback to study the effects of visual art on neural circuits and neuroendocrine markers to find biological evidence that visual art promotes health, wellness, and fosters adaptive responses to stress.

Israeli researchers explain how they are healing the world with precision

Data governs our lives more than ever. But when it comes to disease and death, every data point is a person, someone who became sick and needed treatment.

Recent studies have revealed that people suffering from the same disease category may have different manifestations. As doctors and scientists better understand the reasons underlying this variability, they can develop novel preventive, diagnostic and therapeutic approaches and provide optimal, personalized care for every patient.

To accomplish this goal often requires broadscale collaborations between physicians, basic researchers, theoreticians, experimentalists, computational biologists, computer scientists and data scientists, engineers, statisticians, epidemiologists and others. They must work together to integrate scientific and medical knowledge, theory, analysis of medical big data and extensive experimental work.

This year, the Israel Precision Medicine Partnership (IPMP) selected 16 research projects to receive NIS 60 million in grants with the goal of advancing the implementation of personalized healthcare approaches – providing the right treatment to the right patient at the right time. All the research projects pull data from Israel’s unique and vast medical databases.


HEALTH AND SCIENCE AFFAIRS: 16 Israeli projects get NIS 60m. to innovate next stage of healthcare.

The Coronavirus Is Spreading Through Indigenous Communities In The Amazon

“Now, nearly 2,000 people in and around Leticia are sick with COVID-19. About 70 have died. That might not sound like a colossal death toll at first. But because the surrounding state of Amazonas is sparsely populated, this amounts to the highest per-capita death rate in all of Colombia, according to figures from Colombia’s Health Ministry.”


The governor of Amazonas, Colombia, says it was impossible to cut the area off from Brazil, even as the virus spiked. Now the Colombian border town of Leticia is a coronavirus hot spot.

DARPA, Biotech, and Human Enhancement — ideaXme — Dr. Eric Van Gieson — Biological Technologies Office (BTO) Epigenetic CHaracterization and Observation (ECHO) Program — Ira Pastor

Dr. Thupten Jinpa, Founder and Chairman of Compassion Institute, and The Dalai Lama’s Principal Translator — Discussing Compassion, Spirituality and Human Longevity — ideaXme — Ira Pastor

Scientists Find Speed Key to Protecting Astronauts and Satellites From Space Storms

Speed as important as size in predicting potentially damaging impacts of coronal mass ejections.

Space weather forecasters need to predict the speed of solar eruptions, as much as their size, to protect satellites and the health of astronauts, scientists have found.

Scientists at the University of Reading found that by calculating the speed of coronal mass ejections (CMEs) when they hit Earth, forecasters could provide more useful early warnings. This would help operators of critical infrastructure such as satellites know if they need to take evasive action or switch off systems to protect them, and warn astronauts when they need to shelter inside shielded parts of the International Space Station.

Smallest cavity for light realized by graphene plasmons

Miniaturization has enabled technology like smartphones, health watches, medical probes and nano-satellites, all unthinkable a couple decades ago. Just imagine that in the course of 60 years, the transistor has shrunk from the size of your palm to 14 nanometers in dimension, 1000 times smaller than the diameter of a hair.

Miniaturization has pushed technology to a new era of optical circuitry. But in parallel, it has also triggered new challenges and obstacles, for example, controlling and guiding at the nanometer scale. Researchers are looking for techniques to confine light into extremely tiny spaces, millions of times smaller than current ones. Studies had earlier found that metals can compress light below the wavelength-scale (diffraction limit).

In that aspect, , a material composed from a single layer of carbon atoms, which exhibits exceptional optical and electrical properties, is capable of guiding light in the form of plasmons, which are oscillations of electrons that strongly interact with light. These graphene plasmons have a natural ability to confine light to very small spaces. However, until now, it was only possible to confine these plasmons in one direction, while the actual ability of light to interact with small particles like atoms and molecules resides in the volume into which it can be compressed. This type of confinement in all three dimensions is commonly regarded as an optical cavity.

/* */