Toggle light / dark theme

Using deep learning to control the unconsciousness level of patients in an anesthetic state

In recent years, researchers have been developing machine learning algorithms for an increasingly wide range of purposes. This includes algorithms that can be applied in healthcare settings, for instance helping clinicians to diagnose specific diseases or neuropsychiatric disorders or monitor the health of patients over time.

Researchers at Massachusetts Institute of Technology (MIT) and Massachusetts General Hospital have recently carried out a study investigating the possibility of using learning to control the levels of unconsciousness of patients who require anesthesia for a medical procedure. Their paper, set to be published in the proceedings of the 2020 International Conference on Artificial Intelligence in Medicine, was voted the best paper presented at the conference.

“Our lab has made significant progress in understanding how anesthetic medications affect and now has a multidisciplinary team studying how to accurately determine anesthetic doses from neural recordings,” Gabriel Schamberg, one of the researchers who carried out the study, told TechXplore. “In our recent study, we trained a using the cross-entropy method, by repeatedly letting it run on simulated patients and encouraging actions that led to good outcomes.”

Novel cell membrane model could be key to uncovering new protein properties

The cell membrane, the wall-like boundary between the cell interior and its outside environment, is primarily made up of two kinds of biomolecules: lipids and proteins. Different lipid species closely pack together to form a double layer, or “bilayer,” the membrane’s fundamental structure, while proteins are embedded within or attached to the bilayer.

Membrane proteins are responsible for various important cellular activities, and their dysfunction can lead to serious health issues. Studying protein structures and how they behave will help scientists better understand their connection to diseases and aid in developing therapeutics.

A team of researchers led by Vanderbilt University has recently shed light on how membrane proteins could be influenced by the lipids around them. By developing a novel type of membrane model, the scientists were able to show that the shape and behavior of a protein can be altered by exposure to different compositions.

Ventilator-Associated Pneumonia: Diagnosis, Treatment, and Prevention

While critically ill patients experience a life-threatening illness, they commonly contract ventilator-associated pneumonia. This nosocomial infection increases morbidity and likely mortality as well as the cost of health care. This article reviews the literature with regard to diagnosis, treatment, and prevention. It provides conclusions that can be implemented in practice as well as an algorithm for the bedside clinician and also focuses on the controversies with regard to diagnostic tools and approaches, treatment plans, and prevention strategies.

Patients in the intensive care unit (ICU) are at risk for dying not only from their critical illness but also from secondary processes such as nosocomial infection. Pneumonia is the second most common nosocomial infection in critically ill patients, affecting 27% of all critically ill patients (170). Eighty-six percent of nosocomial pneumonias are associated with mechanical ventilation and are termed ventilator-associated pneumonia (VAP). Between 250,000 and 300,000 cases per year occur in the United States alone, which is an incidence rate of 5 to 10 cases per 1,000 hospital admissions (134, 170). The mortality attributable to VAP has been reported to range between 0 and 50% (10, 41, 43, 96, 161).

Unmanned aircraft transport organs in Las Vegas

Las Vegas hosted two successful test flights using unmanned aircraft to carry human organs and tissue last week. On Sept. 17th, MissionGo, a provider of unmanned aviation solutions and Nevada Donor Network, conducted two unmanned flights — one of which was the longest organ delivery flight in Unmanned Aircraft System (UAS) history. The first flight involved transport of research corneas fromSouthern Hills Hospital and Medical Center to Dignity Health — St. Rose Dominican, San Martín Campus.

Scientists Discover Why We Need Sleep – “Important Work Is Being Done”

In very early life, sleep helps build the brain’s infrastructure, but it then takes on an entirely new decluttering role.

Prolonged sleep deprivation can lead to severe health problems in humans and other animals. But why is sleep so vital to our health? A UCLA-led team of scientists has answered this question and shown for the first time that a dramatic change in the purpose of sleep occurs at the age of about 2-and-a-half.

Before that age, the brain grows very rapidly. During REM sleep, when vivid dreams occur, the young brain is busy building and strengthening synapses — the structures that connect neurons to one another and allow them to communicate.

Common drugs linked to increased risk of Alzheimer’s

A new study suggests anticholinergic medications may increase the risk of accelerated cognitive decline, especially in older adults at high risk of developing Alzheimer’s disease.

Anticholinergic drugs block the action of acetylcholine, a chemical messenger that controls a range of automatic bodily functions and plays a vital role in memory and attention.

Doctors prescribe these drugs for a variety of conditions, including urinary incontinence, overactive bladder, chronic obstructive pulmonary disorder (COPD), seasonal allergies, and depression.

How gene therapy could help astronauts survive deep space deadly radiation

Over the past five decades, space travel advocates have been pushing to expand our footprint in space. They dream about lunar bases, missions to Mars and colonies in free space. The visions are ever changing, with government efforts joined by those of private companies like Elon Musk’s SpaceX — in the midst of an effort to send tourists on a trip around the Moon — gravitating toward the space tourism sector. While the goals and how to accomplish them are in constant flux, there remain certain obstacles that must be overcome before we take that next big step. And one of the biggest is the need to protect the health of our future space explorers.

That’s what’s prompted NASA to turn to the fast-moving world of gene therapy to solve several potential medical issues facing astronauts on lengthy space missions.

The US space agency and the associated Translational Institute for Space Health Research (TRISH) at the Baylor College of Medicine are now calling for proposals from private companies and other groups to develop a kind of gene therapy for astronauts. But this would be different than recent gene therapies that target specific diseases such as hemophilia or various types of cancer. Instead, the idea here is to minimize the damage from space radiation through a kind of preventive treatment. Exposure to radiation in space can cause cancer, cardiovascular disease, cataracts and the loss of cognitive function due to accelerated death of brain cells. These different disease categories involve very different mechanisms — cancer and heart disease result from radiation damaging DNA, while loss of brain tissue results simply from radiation killing off mature cells, and still other diseases result from radiation destroying stem cells.

Akon Unveils Major Details of $6 Billion Cryptocurrency City: Real-Life Wakanda

Akon has released detailed plans of Akon City, his $6 billion futuristic cryptocurrency city, which he calls a “real-life Wakanda,” referring to the hit movie Black Panther. There will be seven major districts, and the city will be run on the akoin cryptocurrency.

Senegalese-American star and philanthropist Akon, whose full name is Aliaune Damala Badara Akon Thiam, unveiled Monday some major details of his planned Akon City. The $6 billion futuristic city in Senegal, Africa, will be run on the akoin cryptocurrency.

The city will be divided into seven major districts: the African culture village district, the offices and residential district, the entertainment district, the health and safety district, the education district, the technology district, and the Senewood district.