Toggle light / dark theme

Convergent engagement of neural and computational sciences and technologies are reciprocally enabling rapid developments in current and near-future military and intelligence operations. In this podcast, Prof. James Giordano of Georgetown University will provide an overview of how these scientific and technological fields can be — and are being — leveraged for non-kinetic and kinetic what has become known as cognitive warfare; and will describe key issues in this rapidly evolving operational domain.

James Giordano PhD, is the Pellegrino Center Professor in the Departments of Neurology and Biochemistry; Chief of the Neuroethics Studies Program; Co-director of the Project in Brain Sciences and Global Health Law and Policy; and Chair of the Subprogram in Military Medical Ethics at Georgetown University Medical Center, Washington DC. Professor Giordano is Senior Bioethicist of the Defense Medical Ethics Center, and Adjunct Professor of Psychiatry at the Uniformed Services University of Health Sciences; Distinguished Stockdale Fellow in Science, Technology, and Ethics at the United States Naval Academy; Senior Science Advisory Fellow of the SMA Branch, Joint Staff, Pentagon; Non-resident Fellow of the Simon Center for the Military Ethic at the US Military Academy, West Point; Distinguished Visiting Professor of Biomedical Sciences, Health Promotions, and Ethics at the Coburg University of Applied Sciences, Coburg, GER; Chair Emeritus of the Neuroethics Project of the IEEE Brain Initiative; and serves as Director of the Institute for Biodefense Research, a federally funded Washington DC think tank dedicated to addressing emerging issues at the intersection of science, technology and national defense. He previously served as Donovan Group Senior Fellow, US Special Operations Command; member of the Neuroethics, Legal, and Social Issues Advisory Panel of the Defense Advanced Research Projects Agency (DARPA); and Task Leader of the Working Group on Dual-Use of the EU-Human Brain Project. Prof. Giordano is the author of over 350 peer-reviewed publications, 9 books and 50governmental reports on science, technology, and biosecurity, and is an elected member of the European Academy of Science and Arts, a Fellow of the Royal Society of Medicine (UK), and a Fulbright Professorial Fellow. A former US Naval officer, he was winged as an aerospace physiologist, and served with the US Navy and Marine Corps.

Iodine is a crucial element in various industries, but it is one of the least abundant nonmetallic elements on Earth. Although seawater holds around 70% of the world’s iodine reserves, its low concentrations—approximately 60 ppb—make extraction challenging. Additionally, radioactive iodine, which is released during nuclear accidents, presents significant long-term risks to marine ecosystems and human health. Therefore, there is an urgent need for effective strategies to both extract iodine from seawater and address radioactive iodine pollution.

Now, a team at Hainan University has developed a supramolecular organic (SOF) for iodine capture from . This framework has demonstrated the ability to remove 79% of iodine pollution in a simulated contaminated environment. In natural seawater, it achieves an ultrahigh iodine adsorption capacity of 46 mg g−1 within a 20-day extraction period. The research is published in the journal Research.

“The sustainable extraction of iodine from seawater is not only vital to meet the increasing global demand but also essential for mitigating the ecological risks posed by pollution,” said senior author Ning Wang. “Innovative materials can contribute to the field by enhancing the selectivity and capacity for iodine extraction from seawater. Our findings showcase an effective strategy for fabricating multi-dimensional 3D SOF materials and also present a promising material for iodine capture from seawater.”

A team of medical researchers and engineers at Google Research has developed a way to use the front-facing camera on a smartphone to monitor a patient’s heart rate. The team has published a paper on the technology on the arXiv preprint server.

Tracking a patient’s over time can reveal clues about their cardiovascular health. The most important measurement is resting heart rate (RHR)—people with an above-normal rate are at a higher risk of heart disease and/or stroke. Persistently high rates, the researchers note, can signal a serious problem.

Over the past several years, personal health device makers have developed wearable external heart monitors, such as necklaces or smartwatches. But these devices are expensive. The researchers have found a cheaper alternative—a deep-learning system that analyzes video from the front-facing camera of a smartphone. The system is called PHRM.

Central sensitization: analysis by physio meets science.

Neurophysiological Mechanism of Central Sensitization in the Spinal Cord following Surgery:

▶️ Central sensitization was first described by Woolf in 1983 (https://pubmed.ncbi.nlm.nih.gov/6656869/) as a form of long-term adaptive neuroplasticity that amplifies the transmission of nociceptive information by affecting spinal cord neurons and is believed to be a principal neurophysiological mechanism with regard to pain persistence.

▶️ Peripheral nociception can trigger a prolonged increase in the excitability of dorsal root ganglia (DRG) neurons, which transmit nociceptive signals to the spinal cord, resulting in central sensitization.

▶️ This condition involves heightened responsiveness of spinal neurons, driven by signaling molecules like adenosine triphosphate (ATP) and neurotransmitters such as glutamate (Glu) and substance P (SP).

▶️ These molecules activate specific receptors on spinal neurons, including purinergic receptor 2 (P2-R), N-methyl-D-aspartate receptor (NMDAR), α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR), and neurokinin 1 receptor (NK1R).

▶️ The activation of these receptors sets off a cascade of intracellular pathways involving enzymes like calcium/calmodulin-dependent protein kinase II (CaMKII), protein kinase C (PKC), protein kinase A (PKA), mechanistic target of rapamycin (mTOR), phosphoinositide 3-kinase (PI3K), and extracellular signal-regulated kinases 1/2 (ERK1/2), all of which amplify the transmission of nociceptive signals to the brain.

Each year, according to the National Institutes of Health (NIH), millions of people in the U.S. are affected by spinal cord and traumatic brain injuries, along with neuro-developmental and degenerative diseases such as ADHD, autism, cerebral palsy, Alzheimer’s disease, multiple sclerosis, epilepsy and Parkinson’s disease.

Assistant Professor Pabitra Sahoo, of Rutgers University-Newark’s Department of Biological Sciences, has made it his life’s work to understand how our neurological system becomes damaged by these injuries and conditions, and when and how neurons in our central and peripheral nervous systems regenerate and heal.

Recently, Sahoo and his RU-N research team made a breakthrough, using a peptide to help nerve cells in both the peripheral and central nervous systems regenerate. They published their findings in Proceedings of the National Academy of Sciences.

From growth hormones to cancer drugs, small molecules play a crucial role in our health. Monitoring them is essential to keeping us healthy; it enables physicians to calculate dosages and patients to monitor their medical conditions at home, for example.

Monitoring small molecules depends on sensing where they are, and in what concentrations. While scientists have developed sensors to detect some small molecules, these sensors are used primarily in research and drug discovery and can only detect a limited range of molecules with particular qualities.

There is a compelling need for sensors that can detect and signal the presence of diverse small molecules of different shapes, sizes, flexibility and polarity.

The battle for artificial intelligence supremacy hinges on microchips. But the semiconductor sector that produces them has a dirty secret: It’s a major source of chemicals linked to cancer and other health problems.

Global chip sales surged more than 19% to roughly $628 billion last year, according to the Semiconductor Industry Association, which forecasts double-digit growth again in 2025. That’s adding urgency to reducing the impacts of so-called “forever chemicals” — which are also used to make firefighting foam, nonstick pans, raincoats and other everyday items — as are regulators in the U.S. and Europe who are beginning to enforce pollution limits for municipal water supplies. In response to this growing demand, a wave of startups are offering potential solutions that won’t cut the chemicals out of the supply chain but can destroy them.

Per-and polyfluoroalkyl substances, or PFAS, have been detected in every corner of the planet from rainwater in the Himalayas to whales off the Faroe Islands and in the blood of almost every human tested. Known as forever chemicals because the properties that make them so useful also make them persistent in the environment, scientists have increasingly linked PFAS to health issues including obesity, infertility and cancer.

The agricultural sector in South Africa is undergoing a transformation with the introduction of AI-powered harvesting robots. These advanced machines are set to revolutionize farming by increasing efficiency, reducing labor costs, and ensuring better crop yields. With the growing challenges of climate change, labor shortages, and the need for sustainable farming, AI-driven technology is emerging as a critical solution for modern agriculture.

Artificial intelligence has become a vital tool in various industries, and agriculture is no exception. AI-powered robots are designed to perform labor-intensive tasks such as planting, watering, monitoring crop health, and harvesting. These machines utilize machine learning, computer vision, and sensor technology to identify ripe crops, pick them with precision, and minimize waste.

In South Africa, where agricultural labor shortages and rising costs have posed challenges to farmers, AI-driven automation is proving to be a game-changer. With an estimated 8.5% of the country’s workforce employed in agriculture, technological advancements can significantly improve productivity while alleviating labor constraints.

While the number of smokers in the world as a proportion of the population is dropping, lung cancer continues to cause almost 2 million deaths per year – and new research reports on a concerning rise in cases among people who’ve never lit up a cigarette.

The international team behind the research found that rates of lung cancer in this group of people could be tied to increasing levels of pollution and the subsequent damage to health, with east Asia, particularly China, the worst affected.

“As lung cancer is the leading cancer worldwide, a comprehensive understanding of the changing epidemiological patterns and their potential causes is essential,” write the researchers in their published paper.