Toggle light / dark theme

Health Apps Study Raises Questions About Digital Medicine’s Future

First, this study is very biased and flawed. Secondly, have the tech companies considered all of the resistance that we’re all going to face with the provider and payer communities plus their lobbyists when we try to promote medical AI, nanobots, etc.

I have seen some resistance mounted by some providers, some pharma, etc. against CRISPR. And, I believe this type of resistance is only going to hurt patients as well as many cancer survivors with a genetic predisposition to cancer, and other genetic mutations.


A study of mobile health apps’ impact on health care costs represents a limited but crucial step for assessing digital medicine.

Read more

Elon Musk identifies electric aircraft, genetics and neuron scale brain computer interfaces as high potential technologies

Elon Musk, CEO of Space Exploration Technologies (SpaceX) and Tesla Motors, Inc, was at Startmeup Hong Kong and talked about what he thought were areas of technological opportunity.

At 37 minutes into this video Elon Musk talks about high potential technology like Hyperloop which he currently does not have time to address electric aircraftgenetics is thorny but is our best shot at many tough diseasesbrain computer interfaces at the neuron level has potential for intelligence augmentationNeural Lace was mentioned.

Scientists from China and the US have found a pioneering way to inject a tiny electronic mesh sensor into the brain that fully integrates with cerebral matter and enables computers to monitor brain activity.

Researchers from Harvard and the National Center for Nanoscience and Technology in Beijing have succeeded in inventing a flexible electrical circuit that fits inside a 0.1mm-diameter glass syringe in a water-based solution.

This tiny electronic mesh sensor is thin and flexible enough to be injected into the brain and gentle enough to integrate fully with brain cells, making human cyborgs a possibilityLieber Research Group, Harvard University

When injected into the brains of mice, the mesh unfurled to 30 times its size and mouse brain cells grew around the mesh, forming connections with the wires in the flexible mesh circuit. The biochemical mouse brain completely accepted the mechanical component and integrated with it without any damage being caused to the mouse.

Read more

Genetic engineering could thwart the Zika virus, among other mosquito-borne diseases

With the recent use of genetically engineered mosquitoes in Brazil to halt the spread of the Zika virus, we might be beginning to see some major health improvements as a consequence of the genetics revolution. A world in which mosquitoes were all but eliminated from the ecosystem would look quite different from the world of today, especially for people living in the tropics where the threat of mosquito transmitted infections does more than just mar an otherwise tranquil margarita sipped from the veranda of a beach resort. This is not to beggar the more mundane advantages of a mosquito-free habitat, but rather call attention to the fact that for large parts of the world, including Brazil, mosquitoes can be the difference between life and death.

Ironically, the genetic changes made to the Aedes aegypti mosquito in order to halt the spread of the Zika virus are deceptively simple. The company behind the project, Oxitec, used a modified version of something called the “Sterile Insect Technique” to create their hybrid specimens. The end goal of this process is to produce a male mosquito possessing a “self-limiting gene.” When these males mate with wild female mosquitoes, they create non viable offspring that perish soon after the birth. The end result is a rapid drop in the mosquito population of a given area.

When compared with some of the more hazardous forms of mosquito control currently in use such as massive spraying of DEET and chemical infusers popular throughout Asia, sterilizing mosquitoes sounds like an imminently reasonable approach. As a journalist who once saw his roadside samosa blasted by a massive spray of DEET from an oncoming municipal vehicle in India, I can personally attest to a preference for a genetic solution.

Read more

Biotechnology, synthetic biology keys to humans colonizing other planets

Over the last 12,000 years or so, human civilization has noticeably reshaped the Earth’s surface. But changes on our own planet will likely pale in comparison when humans settle on other celestial bodies. While many of the changes on Earth over the centuries have been related to food production, by way of agriculture, changes on other worlds will result, not only from the need for on-site production of food, but also for all other consumables, including air.

As vital as synthetic biology will be to the early piloted missions to Mars and voyages of exploration, it will become indispensable to establish a long-term human presence off-Earth, namely colonization. That’s because we’ve evolved over billions of years to thrive specifically in the environments provides by our home planet.

Our physiology is well-suited to Earth’s gravity and its oxygen-rich atmosphere. We also depend on Earth’s magnetic field to shield us from intense space radiation in the form of charged particles. In comparison, Mars currently has no magnetic field to trap particle radiation and an atmosphere that is so thin that any shielding against other types of space radiation is negligible compared with the protection that Earth’s atmosphere affords. At the Martian surface, atmospheric pressure never gets above 7 millibars. That’s like Earth at an altitude of about 27,000 m (89,000 ft), which is almost the edge of space. And it’s not like the moon is a better option for us since it has no atmosphere at all.

Read more

A tiny device inside of mice sends light to nerves

Interesting


Scientists have implanted a wireless device the size of a peppercorn inside mice to stimulate nerves.

The technique combines optogenetics—using light to control the activity of the brain—with a newly developed method for wirelessly powering implanted devices. It’s described in a paper published in Nature Methods.

“This is a new way of delivering wireless power for optogenetics,” says Ada Poon, an assistant professor of electrical engineering at Stanford University. “It’s much smaller and the mouse can move around during an experiment.”

Read more

The World Economic Forum On The Future Of Jobs

“According to many industry observers, we are today on the cusp of a Fourth Industrial Revolution. Developments in previously disjointed fields such as artificial intelligence and machine learning, robotics, nanotechnology, 3D printing and genetics and biotechnology are all building on and amplifying one another…”


The World Economic Forum (WEF) published an analysis today on the technological and sociological drivers of employment.

The report, titled The Future of Jobs, validates the accelerating impact of technology on global employment trends, and also highlights serious concerns that job growth in certain industries is still very much outpaced by large scale declines in other industries.

The report surveyed senior executives and chief human resources officers of various companies “representing more than 13 million employees across 9 broad industry sectors in 15 major developed and emerging economies and regional economic areas.”

Read more

Good Start Genetics, Helix partnership could bring affordable genetic tests to parents-to-be

People with a family history of some inheritable diseases like cystic fibrosis can now be tested to see if they carry the genes for the condition. If neither parent has the disease, but both carry the corresponding gene or genes, the odds of having a child with the condition are higher.


Cambridge diagnostics company Good Start Genetics has partnered with Helix, a startup in California, to bring its genetic tests to a bigger market.

People with a family history of some inheritable diseases like cystic fibrosis can now be tested to see if they carry the genes for the condition. If neither parent has the disease, but both carry the corresponding gene or genes, the odds of having a child with the condition are higher.

Good Start is among the companies that specializes in such “carrier testing” and sells tests for 23 diseases, including cystic fibrosis and spinal muscular atrophy.

Read more

New Algorithm May Someday Enable Scientists to Regrow Limbs and Replace Damaged Organs

A new algorithm has been developed that will drastically reduce the time and effort needed to create induced pluripotent stem cells (iPSCs). As a result of this breakthrough, we can expect a dramatic revolution in regenerative medicine in the near future.

What if you could directly reprogram cells to develop into whatever you wished? What if you could take an undifferentiated, incipient cell, full of the unrealized potential to become any one of the many specialized cells in the human body, and nudge it into becoming ocular tissue, or neural cells, even a new heart to replace an old or damaged one?

This is the promise afforded by Mogrify, the result of the application of computational and mathematical science to the problems of medicine and biology. It was developed by an international collaboration of researchers from the Duke-NUS Medical School in Singapore, the University of Bristol in the United Kingdom, Monash University in Australia, and RIKEN in Japan. The new research was published online in the journal Nature Genetics.

Read more

/* */