Toggle light / dark theme

In 2003, the US Department of Defense and the National Institutes of Health announced that—13 years and $2.7 billion later—they had finally finished mapping the human genome.

But the quest to understand human genetics was far from over: Genomes, which are the entire layout of our 3 billion base pairs of DNA, vary dramatically from person to person. So mapping the first human genome was really just mapping a human genome (the patient’s identity was kept secret for privacy.) And even though shorter genetic sequencing is available, doctors studying rare genetic diseases need the full scope of a patient’s genetic material to find the problematic mutation. Finding these faulty sections of genes is like a microscopic version of Where’s Waldo among 3 billion people wearing stripes, a game that has cost $3 billion to play.

In a paper published (paywall) in Science on March 23, researchers from the Baylor College of Medicine, Massachusetts Institute of Technology, and Harvard University said they have figured a way to sequence the entirety of any genome for just $10,000, in a couple of weeks. Their test project? Re-sequencing the DNA of the mosquito species that spreads the Zika virus.

Read more

A team of researchers from Sweden, France, Belgium and Switzerland has found a way to reverse resistance to an antibiotic drug used to treat tuberculosis. In their paper published in the journal Science, the team describes how they screened compounds that activated different pathways to activate ethionaide, a compound used to treat tuberculosis.

The researchers are currently working with GlaxoSmithKline and Biotech Bioversys to further develop the small prototype molecule into a drug that can be mass produced and sold.


(Medical Xpress)—A team of researchers from Sweden, France, Belgium and Switzerland has found a way to reverse resistance to an antibiotic drug used to treat tuberculosis. In their paper published in the journal Science, the team describes how they screened compounds that activated different pathways to activate ethionaide, a compound used to treat tuberculosis.

The development of antibiotics to treat bacterial infections has very clearly made the world a healthier place. Unfortunately, over time, bacteria have been evolving to thwart such compounds, putting us all at risk once again. Because of that, scientists have been searching for new treatments, or in some cases, ways to make old treatments work again using new techniques. In this new effort, the researchers have found a way to make ethionaide, a prodrug (a compound that is metabolized in the body to produce a desired drug), become effective again in patients infected with of Mycobacterium tuberculosis.

Imagine a world where parents can give birth to superbabies with bones so strong they’re impervious to a surgical drill and a heart less prone to failure. A world where a child has DNA from three parents, not two. A world where it’s possible for a woman to have her favorite movie star’s child simply by collecting a few of his skin cells. Genetic technology is making it all a reality, horrifying some and heartening others.

Reproductive advances are arriving so rapidly, we’ve already entered the realm of science-fiction and are on the verge of making truly astounding leaps.

For more, look to the new book “The Gene Machine: How Genetic Technologies Are Changing the Way We Have Kids — and the Kids We Have” by Bonnie Rochman.

Read more

Science has taken another step toward delivering the perfect newborn – or at least a bouncing baby free of certain genetic defects.

Chinese researchers used a genome editing technique called CRISPR to rid normal embryos of hereditary diseases that cause blood disorders and other ailments, according to New Scientist. Experts who reviewed the project told the publication that, even though it involved just six embryos, it carries promise.

“It is encouraging,” Robin Lovell-Badge, a human genome expert at the Francis Crick Institute in London, told New Scientist.

Read more

This is nowhere near the power of the biggest systems, but still allows us to participate in research and development powered by supercomputer.

The idea that a computer could deliver an increase in life expectancy arises for a number of reasons, Prof Desplat says. Major gains are expected from the emergence of personalised medicine, care specifically tailored to match your genetic make-up. This will be driven in the not too distant future by “deep artificial intelligence learning” run on a supercomputer. These will also deliver faster more accurate early diagnosis, he says.

These computers are used in a variety of ways, from weather forecasting and climate modelling to energy usage modelling, statistical processing and seismic analysis when prospecting for oil and gas.

Read more

George Church is very interested in your memories now.


Harvard researcher George Church is looking for people with exceptionally good memory to take part in a study aimed at finding genetic mechanisms that boost memory in research that could one day result in better drugs or diagnostic tests.

Church and other researchers at Harvard’s Wyss Institute for Biologically Inspired Engineering and Harvard Medical School’s Personal Genome Project, in collaboration with Lumos Labs — the makers of the brain-training game Lumosity — will look for common genetic markers in individuals with exceptional memories, attention and reaction speeds.

Read more

Bowles says. “We’re not changing what is in your genetic code. We’re altering what is expressed. Normally, cells do this themselves, but we are taking engineering control over these cells to tell them what to turn on and turn off.”

Now that researchers know they can do this, doctors will be able to modify the genes via an injection directly to the affected area and delay the degeneration of tissue. In the case of back pain, a patient may get a discectomy to remove part of a herniated disc to relieve the pain, but tissue near the spinal cord may continue to breakdown, leading to future pain. This method could stave off additional surgeries by stopping the tissue damage.

So far, the team has developed a virus that can deliver the gene therapy and has filed a patent on the system. They hope to proceed to human trials after collecting initial data, but Bowles believes it could be about 10 years before this method is used in patients.


Summary: Researchers use CRISPR to modulate genes in order to reduce tissue damage and inflammation for people with neck and back pain.

Scientists have developed a retinal implant that can restore lost vision in rats, and are planning to trial the procedure in humans later this year.

The implant, which converts light into an electrical signal that stimulates retinal neurons, could give hope to millions who experience retinal degeneration – including retinitis pigmentosa – in which photoreceptor cells in the eye begin to break down, leading to blindness.

The retina is located at the back of the eye, and is made up of millions of these light-sensitive photoreceptors. But mutations in any one of the 240 identified genes can lead to retinal degeneration, where these photoreceptor cells die off, even while the retinal neurons around them are unaffected.

Read more