Toggle light / dark theme

Geneticists exploring the dark heart of the human genome have discovered big chunks of Neanderthal and other ancient DNA. The results open new ways to study both how chromosomes behave during cell division and how they have changed during human evolution.

Centromeres sit in the middle of chromosomes, the pinched-in “waist” in the image of a chromosome from a biology textbook. The centromere anchors the fibers that pull chromosomes apart when cells divide, which means they are really important for understanding what happens when goes wrong, leading to cancer or genetic defects.

But the DNA of centromeres contains lots of repeating sequences, and scientists have been unable to properly map this region.

Steven Finkel tells the story of a close family member who had a discomforting health issue—the kind you don’t discuss at the dinner table.

“She went and chose a bunch of yogurts with active culture,” he says. The first yogurt—call it Yogurt A—made her constipated, and Yogurt B gave her diarrhea. “It’s like Goldilocks,” he adds, before concluding her tale of woe with a happy ending: “Yogurt C made her feel great.”

Hoping to understand how three versions of one food could cause such dissimilar reactions, the relative contacted Finkel, who is professor of biological sciences at USC Dornsife and an expert on bacterial physiology, genetics and evolution.

CRISPR genome editing is one of the most significant, world-changing technologies of our era, allowing scientists to make incredibly precise cut n’ paste edits to the DNA of living organisms. Now, one synthetic biologist from NASA plans to make it as accessible as a home science kit, so you can bio-hack yeast and bacteria on your kitchen bench.

George Church is a Harvard scientist that is famed for his plan to bring the woolly mammoth back to life. This genius scientist has also been involved in another project and has been assembling a list of genetic mutations and alterations that could give people longer lives and superhuman powers. We could be on the brink of real-life superheroes!

While some people may think this is just a passing thought, it really isn’t. In fact, Church has even created a spreadsheet which lists the known pros and cons of each gene and what “superpower” they would give. One example would be a specific mutation to the LRP5 gene, which would give the patient extra-strong bones. However, such a power would also decrease buoyancy in water. Other weird and wonderful changes could offer patients resistance to radiation or incredible skills at holding their breath underwater.

GSK forms CRISPR alliance with UC Berkeley and UCSF to create functional genomics insitute. The main one, technologywise, is this about using CRISPR as a gene function screen. One can do a gazillion experiments at once, fleshing out connections, sketching the biology, finding drug targets. http://bit.do/eU942


S AN FRANCISCO — The drug maker GlaxoSmithKline announced Thursday that it would team up with some of the nation’s most prominent CRISPR researchers to use the gene-editing technology in a search for new medicines, establishing a new lab in San Francisco and spending up to $67 million over five years.

Jennifer Doudna, the University of California, Berkeley, researcher who co-invented the CRISPR enzyme technology, will help lead the effort, along with Jonathan Weissman, a UC San Francisco researcher who has been using CRISPR to understand the function of individual human genes and how they work together. Both are Howard Hughes Medical Institute investigators.

The lab will be called the Laboratory for Genomic Research and will be based near UCSF’s Mission Bay campus. The money will fund 24 full-time University of California employees, in addition to as many as 14 full-time GSK employees. GSK’s machine learning and artificial intelligence groups will create computer systems that can handle the large amounts of data the project is expected to create. It will focus on immunology, oncology, and neurology.

The modern world is facing a tsunami of data. DNA is emerging as an ultra-compact way of storing it all, and now researchers supported by Microsoft have created the first system that can automatically translate digital information into genetic code and retrieve it again.

In 2018 we created 33 zettabytes (ZB)—33 trillion gigabytes—of data, according to analysts at IDC, and they predict that by 2025 that figure will rise to 175 ZB. It’s been estimated that if we were to store all our information in flash drives, by 2040 it would require 10 to 100 times the global supply of chip-grade silicon.

DNA, on the other hand, is so compact it could shrink a data center to the size of a few dice. But for that to become practical we need a DNA-based equivalent of a hard drive that lets you upload and download data in a simple and intuitive way.

Read more

Scientists have found a genetic mutation that cranks up someone’s pain tolerance to the superhuman level.

New research describes an Italian family with a rare gene that turns down their pain sensitivity and might offer clues in the development of pain treatments, particularly those who experience chronic pain. The six members of this family, who are from three different generations, have “a distinctive pain response that has not been identified in any other people,” University College London explained. The low-pain condition is called congenital analgesia and has been connected to a couple of other genetic mutations as well, but the studied family has a unique set of symptoms.

“The members of this family can burn themselves or experience … bone fractures without feeling any pain,” lead study author James Cox said in the university statement. “Their nerves are all there, they’re just not working how they should be. We’re working to gain a better understanding of exactly why they don’t feel much pain.”

Read more