Toggle light / dark theme

Vaccines Are Pushing Pathogens to Evolve

In March 2017, Read and his Penn State colleague David Kennedy published a paper in the Proceedings of the Royal Society B in which they outlined several strategies that vaccine developers could use to ensure that future vaccines don’t get punked by evolutionary forces. One overarching recommendation is that vaccines should induce immune responses against multiple targets. A number of successful, seemingly evolution-proof vaccines already work this way: After people get inoculated with a tetanus shot, for example, their blood contains 100 types of unique antibodies, all of which fight the bacteria in different ways. In such a situation, it becomes much harder for a pathogen to accumulate all the changes needed to survive. It also helps if vaccines target all the known subpopulations of a particular pathogen, not just the most common or dangerous ones. Richard Malley and other researchers at Boston Children’s Hospital are, for instance, trying to develop a universal pneumococcal vaccine that is not serotype-specific.

Vaccines should also bar pathogens from replicating and transmitting inside inoculated hosts. One of the reasons that vaccine resistance is less of a problem than antibiotic resistance, Read and Kennedy posit, is that antibiotics tend to be given after an infection has already taken hold — when the pathogen population inside the host is already large and genetically diverse and might include mutants that can resist the drug’s effects. Most vaccines, on the other hand, are administered before infection and limit replication, which minimizes evolutionary opportunities.

But the most crucial need right now is for vaccine scientists to recognize the relevance of evolutionary biology to their field. Last month, when more than 1000 vaccine scientists gathered in Washington, D.C., at the World Vaccine Congress, the issue of vaccine-induced evolution was not the focus of any scientific sessions. Part of the problem, Read says, is that researchers are afraid: They’re nervous to talk about and call attention to potential evolutionary effects because they fear that doing so might fuel more fear and distrust of vaccines by the public — even though the goal is, of course, to ensure long-term vaccine success. Still, he and Kennedy feel researchers are starting to recognize the need to include evolution in the conversation. “I think the scientific community is becoming increasingly aware that vaccine resistance is a real risk,” Kennedy said.

Nature has learnt how to eat our plastic!

Nature always finds a way…so they say! But it looks like it may actually be true in the case of our global plastic waste dilemma. Genetic mutations have been discovered in specific natural bacteria that enable them to break the polymer chains of certain plastics. Where have we found these bacteria? Well…in plastic recycling dumps of course. So, gloves and masks on everyone. We’re going in!

Video Transcripts available at our website.
http://www.justhaveathink.com.

Help support this channels independence at http://www.patreon.com/justhaveathink.

Or with a donation via Paypal by clicking here.
https://www.paypal.com/cgi-bin/webscr?cmd=_s-xclick&hosted_b…source=url.

You can also help keep my brain ticking over during the long hours of research and editing via the nice folks at BuyMeACoffee.com.
https://www.buymeacoffee.com/justhaveathink.

Download the Just Have a Think App from the AppStore or Google Play.

Brain Cells Snap Open Their DNA To Make Memories – Extent of DNA Double-Strand Breaks Is “Surprising and Concerning”

To quickly express learning and memory genes, brain cells snap both strands of DNA in many more places and cell types than previously realized, a new study shows.

The urgency to remember a dangerous experience requires the brain to make a series of potentially dangerous moves: Neurons and other brain cells snap open their DNA in numerous locations — more than previously realized, according to a new study — to provide quick access to genetic instructions for the mechanisms of memory storage.

The extent of these DNA double-strand breaks (DSBs) in multiple key brain regions is surprising and concerning, says study senior author Li-Huei Tsai, Picower Professor of Neuroscience at MIT and director of The Picower Institute for Learning and Memory, because while the breaks are routinely repaired, that process may become more flawed and fragile with age. Tsai’s lab has shown that lingering DSBs are associated with neurodegeneration and cognitive decline and that repair mechanisms can falter.

Biological space race: NASA doctor reveals the future of genetically edited astronauts

One of the scientists prodding and poking the Kelly brothers is Prof Christopher E Mason, the lead geneticist on the Twins Study. Mason’s lab at Cornell University is nothing if not ambitious. Its work centres on a “500-year plan for the survival of the human species on Earth, in space, and on other planets.”

As well as studying what happens to astronauts, it involves laying the genetic groundwork for humans to live among the stars. Mason envisions a future in which the human genome can be bioengineered to adapt to almost any environment, augmented with genes from other species that allow us to explore and settle the farthest corners of the Universe.

Scientists produce first genetically engineered marsupials

We probably at this point should make all animals immortal: 3.


The advance promises to unlock new insights into human biology and disease, aiding in the study of everything from the developing immune system to tissue regeneration to skin cancer.

“Studying biodiversity is not just about exploring the biology of a bunch of interesting organisms, but ultimately for a better understanding of human biology,” developmental biologist and lead study author Hiroshi Kiyonari said via email.

Five years ago, his team began to systematically work out the problem that had so long plagued the opossum field. The first barrier was to collect zygotes (fertilized eggs) at the right time. Ideally, that would be before they began dividing, when they are still a single cell. If you inject CRISPR at this stage, you can be sure all the resulting animals’ cells will carry whatever DNA changes you make. Doing it later can mean some cells but not others will be edited — a less ideal outcome known as mosaicism. Another benefit of collecting fertilized eggs as early as possible is that the shell coat hasn’t had time to thicken.

Brain ‘Noise’ Keeps Nerve Connections Young

The findings, published in Nature Communications, could have important implications for human health: minis have been found at every type of synapse studied so far, and defects in miniature neurotransmission have been linked to range of neurodevelopmental disorders in children. Figuring out how a reduction in miniature neurotransmission changes the structure of synapses, and how that in turn affects behavior, could help to better understand neurodegenerative disorders and other brain conditions.


Summary: Study reveals how miniature release events help to keep neurons intact and preserve motor neuron function in aging insects.

Source: EPFL

Neurons communicate through rapid electrical signals that regulate the release of neurotransmitters, the brain’s chemical messengers. Once transmitted across a neuron, electrical signals cause the juncture with another neuron, known as a synapse, to release droplets filled with neurotransmitters that pass the information on to the next neuron. This type of neuron-to-neuron communication is known as evoked neurotransmission.

However, some neurotransmitter-packed droplets are released at the synapse even in the absence of electrical impulses. These miniature release events — or minis — have long been regarded as ‘background noise’, says Brian McCabe, Director of the Laboratory of Neural Genetics and Disease and a Professor in the EPFL Brain Mind Institute.

Dr. Jean M. Hebert, Ph.D. — Replacing Aging — Albert Einstein College of Medicine

Replacing Aging — Dr. Jean M. Hebert, Ph.D. Albert Einstein College of Medicine.


Dr. Jean M. Hebert, Ph.D. (https://einsteinmed.org/faculty/9069/jean-hebert/) is Professor in the Department of Genetics and in the Dominick P. Purpura Department of Neuroscience, at Albert Einstein College of Medicine.

He’s also the author of the book Replacing Aging, which describes how regenerative medicine will beat aging.

With a Ph.D. in Genetics from the University of California, San Francisco, Dr. Hebert’s current lab’s projects fall into two groups.

First, they focus on using the mouse neocortex as a platform for testing the ability of multi-cell type grafts (increasingly resembling normal neocortex) to integrate with host tissue.

The virus trap

To date, there are no effective antidotes against most virus infections. An interdisciplinary research team at the Technical University of Munich (TUM) has now developed a new approach: they engulf and neutralize viruses with nano-capsules tailored from genetic material using the DNA origami method. The strategy has already been tested against hepatitis and adeno-associated viruses in cell cultures. It may also prove successful against corona viruses.

Why identical mutations cause different types of cancer

“Our studies in mice revealed how genes co-operate to cause cancer in different organs. We identified main players, the order in which they occur during tumor progression, and the molecular processes how they turn normal cells into threatening cancers. Such processes are potential targets for new treatments”.


Why do alterations of certain genes cause cancer only in specific organs of the human body? Scientists at the German Cancer Consortium (DKTK), the Technical University of Munich (TUM), and the University Medical Center Göttingen have now demonstrated that cells originating from different organs are differentially susceptible to activating mutations in cancer drivers: The same mutation in precursor cells of the pancreas or the bile duct leads to fundamental different outcomes. The team discovered for the first time that tissue specific genetic interactions are responsible for the differential susceptibility of the biliary and the pancreatic epithelium towards transformation by oncogenes. The new findings could guide more precise therapeutic decision making in the future.

There have been no major improvements in the treatment of pancreatic and in the last decades and no effective targeted therapies are available to date. “The situation for patients with pancreatic and extrahepatic bile duct cancer is still very depressing with approximately only 10% of patients surviving five years,” says Dieter Saur, DKTK Professor for Translational Cancer Research at TUM’s university hospital Klinikum rechts der Isar, DKTK partner site Munich.

DKTK is a consortium centered around the German Cancer Research Center (DKFZ) in Heidelberg, which has long-term collaborative partnerships with specialist oncological centers at universities across Germany.

/* */