Chinese scientists developed a targeted delivery system that can conduct precise gene-editing for inflammatory bowel disease. /CFP
Chinese scientists have developed a targeted delivery system that can bring gene-editing tools to colon cells, offering a precise cure for inflammatory bowel disease.
The study, published on Thursday in the journal Science Advances, reported a CRISPR-Cas9 prodrug nanosystem that can transport a gene-editing protein exclusively to inflammatory lesions in mice colons and then “switch on” the protein.
Many intractable diseases are the result of a genetic mutation. Genome editing technology promises to correct the mutation and thus new treatments for patients. However, getting the technology to the cells that need the correction remains a major challenge. A new study led by CiRA Junior Associate Professor Akitsu Hotta and in collaboration with Takeda Pharmaceutical Company Limited as part of the T-CiRA Joint Research Program reports how lipid nanoparticles provide an effective means for the delivery to treat Duchenne muscular dystrophy (DMD) in mice.
Last year’s Nobel Prize for Chemistry to the discoverers of CRISPR-Cas9 cemented the impact of genome editing technology. While CRISPR-Cas9 can be applied to agriculture and livestock for more nutritious food and robust crops, most media attention is on its medical potential. DMD is just one of the many diseases that researchers foresee a treatment using CRISPR-Cas9.
“Oligonucleotide drugs are now available for DMD, but their effects are transient, so the patient has to undergo weekly treatments. On the other hand, CRISPR-Cas9 effects are long lasting,” said Hotta.
Gene therapy is a powerful developing technology that has the potential to address myriad diseases. For example, Huntington’s disease, a neurodegenerative disorder, is caused by a mutation in a single gene, and if researchers could go into specific cells and correct that defect, theoretically those cells could regain normal function.
A major challenge, however, has been creating the right “delivery vehicles” that can carry genes and molecules into the cells that need treatment, while avoiding the cells that do not.
Now, a team led by Caltech researchers has developed a gene-delivery system that can specifically target brain cells while avoiding the liver. This is important because a gene therapy intended to treat a disorder in the brain, for example, could also have the side effect of creating a toxic immune response in the liver, hence the desire to find delivery vehicles that only go to their intended target. The findings were shown in both mouse and marmoset models, an important step towards translating the technology into humans.
A new technology is allowing one company to produce full-spectrum cannabis without growing the plant itself.
Sounds like something out of a science fiction movie, but it’s very real. In what could be a global first, this week, a publicly traded Canadian-Israeli biotech firm company, BioHarvest Sciences, will announce that it has managed to produce at least 10kg of full-spectrum cannabis without the plant itself.
According to information procured exclusively, the biomass in question was created using the company’s proprietary BioFarming technology platform, which allows it to grow natural plant cells in bioreactors. In addition, management assures, the product is not genetically modified, and is “uniquely consistent and clean.” This could provide an interesting solution to two of the cannabis industry’s main pain points: product variability and contamination — the aseptic, controlled environment means the product isn’t affected by fungi, yeast, mold or any other contaminants or pesticides.
Exclusive details on breakthrough plant technology that could revolutionize medicine, food, land conservation and more.
The double-helix structure has practically become synonymous with DNA, but it isn’t the only way long strands of genetic information squeeze themselves into a tight space.
When a double-strand of DNA doubles back on itself or attaches to another double-strand, it can actually create a quadruple-stranded knot, known as a G-quadruplex.
Scientists first discovered these ‘double-double-helixes’ in living human cells in 2013, and in the years since, these knots have been found in high concentrations in cancerous cells.
Researchers from the Skolkovo Institute of Science and Technology and Saratov State University have come up with an inexpensive method for visualizing blood flow in the brain. The new technique is so precise it discerns the motions of individual red blood cells — all without the use of toxic dyeing agents or expensive genetic engineering. The study was published in The European Physical Journal Plus.
To understand more about how the brain’s blood supply works, researchers map its blood vessel networks. The resulting visualizations can rely on a variety of methods. One highly precise technique involves injecting fluorescent dyes into the blood flow and detecting the infrared light they emit. The problem with dyes is they are toxic and also may distort mapping results by affecting the vessels. Alternatively, researchers employ genetically modified animals, whose interior lining of blood vessels is engineered to give off light with no foreign substances involved. Both methods are very expensive, though.
Researchers from Skoltech and Saratov State University have devised an inexpensive method for visualizing even the smallest capillaries in the brain. The method — which integrates optical microscopy and image processing — is dye-free and very fine-grained, owing to its ability to detect each and every red blood cell travelling along a blood vessel. Since the number of RBCs in capillaries is not that high, every cell counts, so this is an important advantage over other methods, including dye-free ones.
As we age, our muscles gradually become smaller, weaker and less able to heal after injury. In a new study, UPMC and University of Pittsburgh researchers pinpoint an important mediator of youthfulness in mouse muscle, a discovery that could advance muscle regeneration therapies for older people.
Published today in Nature Aging, the study demonstrates that circulating shuttles called extracellular vesicles, or EVs, deliver genetic instructions for the longevity protein known as Klotho to muscle cells. Loss of muscle function and impaired muscle repair in old mice may be driven by aged EVs, which carry fewer copies of these instructions than those in young animals.
The findings are an important advance in understanding why the capacity for muscles to regenerate dwindles with age.
Boyden’s award-winning research has led to tools that can activate or silence neurons with light, enabling the causal assessment of how specific neurons contribute to normal and pathological brain functions.
Ed Boyden is the founder and principal investigator of the Synthetic Neurobiology Group at Massachusetts Institute of Technology (MIT). The group develops tools for controlling and observing the dynamic circuits of the brain, and uses these neurotechnologies to understand how cognition and emotion arise from brain network operation, as well as to enable systematic repair of intractable brain disorders such as epilepsy, Parkinson’s disease, post-traumatic stress disorder, and chronic pain.
Many disorders of the brain currently are treated with drugs or electrical stimulation. Nearly a quarter of million people have implanted electrical probes in their brains for such stimulation. The problem with this approach is that it targets large areas of the brain instead of the discrete cells or location that cause the disorder. Boyden works on implementing light-stimulated processes in the brain to address these disorders at the cellular level. The method utilizes adeno-associated viruses (AAV) to create light-sensitive centers in the brain which can then be stimulated by light pulses. Very small optical waveguides (fibers) can then be introduced in the brain to stimulate these sites.
Boyden was named to the “Top 35 Innovators Under the Age of 35″ by Technology Review and to the “Top 20 Brains Under Age 40″ by Discover, and has received the NIH Director’s New Innovator Award, the Society for Neuroscience Research Award for Innovation in Neuroscience, and the Paul Allen Distinguished Investigator Award, as well as numerous other recognitions. In early 2011, he was an invited speaker at the renowned TED conference, sharing the bill with a high-powered lineup that included presenters as diverse as Bill Gates and choreographer Julie Taymor.
He has contributed numerous articles to SPIE Proceedings, and was an invited speaker at the Biomedical Optics Hot Topics Session at SPIE Photonics West 2011.
Nick talks to Stanford psychiatrist and neuroscientist Dr. Karl Deisseroth. They discuss a range of topics about the brain, including autism, depression, bipolar disorder, dissociation, and more. They also talk about optogenetics, a technique Karl co-developed which uses light to control specific neurons in the brain, allowing neuroscientists to turn circuits in the brain on and off to reveal how the brain generates perception, emotion, and behavior. They also talk about Karls’ new book, “Projections: A Story of Human Emotion.”
Nick is a neuroscientist and podcast host. He is currently Director of Science & Innovation at Leafly, the world’s largest cannabis information resource. He received a Ph.D. in Neuroscience from Harvard University and a B.S. in Genetics from the University of Wisconsin-Madison.
Associate Professor of Biological Engineering and Brain and Cognitive Sciences Ed Boyden explains optogenetics and how it is used in neurological research.