Toggle light / dark theme

Hugo de Garis — From Nanotech to Femtotech — There’s Plenty More Room at the Bottom

Discusses the possibility of Femtotech and the technological possibilities it may unlock. Not long ago nanotechnology was a fringe topic; now it’s a flourishing engineering field, and fairly mainstream. For example, while writing this article, I happened to receive an email advertisement for the “Second World Conference on Nanomedicine and Drug Delivery,” in Kerala, India. It wasn’t so long ago that nanomedicine seemed merely a flicker in the eyes of Robert Freitas and a few other visionaries!

But nano is not as small as the world goes. A nanometer is 10–9 meters – the scale of atoms and molecules. A water molecule is a bit less than one nanometer long, and a germ is around a thousand nanometers across. On the other hand, a proton has a diameter of a couple femtometers – where a femtometer, at 10–15 meters, makes a nanometer seem positively gargantuan. Now that the viability of nanotech is widely accepted (in spite of some ongoing heated debates about the details), it’s time to ask: what about femtotech? Picotech or other technologies at the scales between nano and femto seem relatively uninteresting, because we don’t know any basic constituents of matter that exist at those scales. But femtotech, based on engineering structures from subatomic particles, makes perfect conceptual sense, though it’s certainly difficult given current technology.

The nanotech field was arguably launched by Richard Feynman’s 1959 talk “There’s Plenty of Room at the Bottom.” As Feynman wrote there.

“It is a staggeringly small world that is below. In the year 2000, when they look back at this age, they will wonder why it was not until the year 1960 that anybody began seriously to move in this direction.

Why cannot we write the entire 24 volumes of the Encyclopedia Brittanica on the head of a pin? ”

Bio: Hugo de Garis (born 1947, Sydney, Australia) is a researcher in the sub-field of artificial intelligence (AI) known as evolvable hardware. He became known in the 1990s for his research on the use of genetic algorithms to evolve neural networks using three dimensional cellular automata inside field programmable gate arrays. He claimed that this approach would enable the creation of what he terms “artificial brains” which would quickly surpass human levels of intelligence.

A Potential Cure for AIDS: Defeating HIV With a Single Injection

A new study from Tel Aviv University proposes a novel AIDS treatment that could be turned into a vaccine or a one-time treatment for HIV patients. The research explored modifying type B white blood cells in the patient’s body to release anti-HIV antibodies in response to the virus. Dr. Adi Barzel and Ph.D. student Alessio Nehmad led the study, which was conducted in partnership with the Sourasky Medical Center (Ichilov), the George S. Wise department of life sciences, and the Dotan Center for Advanced Therapies. The study was carried out in cooperation with other researchers from Israel and the United States. The findings were published recently in the renowned journal Nature Biotechnology.

Many AIDS patients’ lives have improved during the past two decades as a result of the administration of medicines that have transformed the condition from fatal to chronic. However, we have a long way to go before finding a medication that can offer patients a permanent cure. Dr. Barzel’s laboratory pioneered one feasible method, a one-time injection. His team devised a technology that employs type B white blood cells that are genetically altered within the patient’s body to release neutralizing antibodies against the HIV virus, which causes the disease.

B cells are white blood cells that produce antibodies against viruses, bacteria, and other pathogens. Bone marrow is where B cells are formed. When they mature, B cells move into the blood and lymphatic system and from there to the different body parts.

Using Light to Manipulate Neuron Excitability

Summary: A new optogenetics-based technique allows researchers to control neuron excitability.

Source: MIT

Nearly 20 years ago, scientists developed ways to stimulate or silence neurons by shining light on them. This technique, known as optogenetics, allows researchers to discover the functions of specific neurons and how they communicate with other neurons to form circuits.

EctoLife: The World’s First Artificial Womb Facility

The world’s first artificial womb facility, EctoLife, will be able to grow 30,000 babies a year. It’s based on over 50 years of groundbreaking scientific research conducted by researchers worldwide.

Join me on:
- TikTok: https://www.tiktok.com/@hashem.alghaili.
- Instagram: https://www.instagram.com/hashem.alghaili/
- Facebook: https://www.facebook.com/ScienceNaturePage/
- LinkedIn: https://www.linkedin.com/in/hashem-al-ghaili-1b30679b/
- Twitter: https://twitter.com/HashemGhaili.

#EctoLife #ArtificialWomb #Genetics

Flipping the switch: Scientists shed new light on genetic changes that turn ‘on’ cancer genes

Cancer, caused by abnormal overgrowth of cells, is the second-leading cause of death in the world. Researchers from the Salk Institute have zeroed in on specific mechanisms that activate oncogenes, which are altered genes that can cause normal cells to become cancer cells.

Cancer can be caused by , yet the impact of specific types such as structural variants that break and rejoin DNA, can vary widely. The findings, published in Nature on December 7, 2022, show that the activity of those mutations depends on the distance between a particular gene and the sequences that regulate the gene, as well as on the level of activity of the regulatory sequences involved.

This work advances the ability to predict and interpret which genetic mutations found in cancer genomes are causing the disease.

The CRISPR Apostle: Rodolphe Barrangou

http://www.iBiology.org.

For millennia, humans have been harnessing #microbes to produce everything from breads, to cheeses, to alcohol. Now these tiny organisms have produced another powerful revolution — the gene editing tool CRISPR. Rodolphe Barrangou, Ph.D., was working at the food company Danisco, where he was trying to produce yogurt lines resistant to contamination. In a series of groundbreaking experiments, he helped uncover what CRISPR was, how it worked, and why it could be so transformative.

Speaker Biography:
Rodolphe Barrangou, Ph.D., studies beneficial microbes, focusing on the occurrence and diversity of lactic acid bacteria in fermented foods and as probiotics. Using functional genomics, he has focused on uncovering the genetic basis for health-promoting traits, including the ability to uptake and catabolize non-digestible carbohydrates. He spent 9 years at Danisco-DuPont, characterizing probiotics and starter cultures, and established the functional role of CRISPR-Cas as adaptive immune systems in bacteria. At NC State, he continues to study the molecular basis for their mechanism of action, as well as developing and applying CRISPR-based technologies for genotyping, building immunity and genome editing.

Producers: Sarah Goodwin, Rebecca Ellsworth.
Cinematographer: Derek Reich.
Editor: Rebecca Ellsworth\
Graphics: Chris George, Maggie Hubbard.
Assistant Camera: Gray McClamrock.
Drone aerials: Travis Jack.
Supervising Editor: Regina Sobel.
Field Producer: Meredith DeSalazar.
Interview by: Adam Bolt.
Associate Producer: Shelley Elizabeth Carter.
Executive Producers: Shannon Behrman, Sarah Goodwin, Elliot Kirschner.

Except where otherwise noted, this work is licensed under.
http://creativecommons.org/licenses/by-nc-nd/4.0/
© 2007–2022 Science Communication Lab™. All rights reserved.

#biology #research

A signaling pathway within brain cells that regulates how long and how deeply we sleep

A good night’s sleep can work wonders for both mind and body. But what is it that determines how much we need to sleep, and what can cause us to sleep more deeply?

In a new study, researchers from the University of Tsukuba have now provided some answers, revealing a signaling pathway within that regulates the length and depth of sleep.

“We examined in mice and how these affect their patterns of sleep,” says senior author of the study, Professor Hiromasa Funato. “We identified a mutation that led to the mice sleeping much longer and more deeply than usual.” The researchers found that this was caused by low levels of an enzyme called histone deacetylase 4 (HDAC4), which is known to suppress the expression of target genes.

How to edit the genes of nature’s master manipulators

CRISPR, the Nobel Prize-winning gene editing technology, is poised to have a profound impact on the fields of microbiology and medicine yet again.

A team led by CRISPR pioneer Jennifer Doudna and her longtime collaborator Jill Banfield has developed a clever tool to edit the genomes of bacteria-infecting viruses called bacteriophages using a rare form of CRISPR. The ability to easily engineer custom-designed —which has long eluded the —could help researchers control microbiomes without antibiotics or harsh chemicals, and treat dangerous drug-resistant infections. A paper describing the work was recently published in Nature Microbiology.

“Bacteriophages are some of the most abundant and diverse biological entities on Earth. Unlike prior approaches, this editing strategy works against the tremendous genetic diversity of bacteriophages,” said first author Benjamin Adler, a postdoctoral fellow in Doudna’s lab. “There are so many exciting directions here—discovery is literally at our fingertips.”

Small Fluorescent Protein Helps to Create More Detailed Biomedical Images

Imaging deep tissues with light is challenging. Visible light is often quickly absorbed and scattered by structures and molecules in the body, preventing researchers from seeing deeper than a millimeter within a tissue. If they do manage to probe further, substances like collagen or melanin often muddy the image, creating the equivalent of background noise through their natural fluorescence. As the authors explained, “Biological tissues have strong optical attenuation in the visible wavelength range (350–700 nm), due to the absorption of hemoglobin and melanin, as well as the tissue scattering, which fundamentally limits the imaging depth of high-resolution optical technologies.”

To wade out from these muddied waters, Yao and collaborator Vladislav Verkhusha, PhD, professor of genetics at Albert Einstein College of Medicine, developed a protein that absorbs and emits longer wavelengths of light in the near-infrared (NIR) spectrum. “Tissue is the most transparent in the 700‑1300 nm window of NIR light,” said Yao. “At those wavelengths, light can penetrate deeper into a tissue, and because there is less natural background fluorescence to filter out, we can take longer exposures and capture clearer images.”

Verkhusha and his lab used a process called directed molecular evolution to engineer their proteins, using photoreceptors normally found in bacteria as the basis for the structure. “The state-of-the-art NIR FPs were engineered from bacterial phytochrome photoreceptors (BphPs),” the team noted. “Applying rational design, we developed 17 kDa cyanobacteriochrome-based near-infrared (NIR-I) fluorescent protein, miRFP718nano.”

Common workplace fumes and dusts may heighten rheumatoid arthritis risk

Breathing in common workplace dusts and fumes from agents such as vapors, gases, and solvents may heighten the risk of developing rheumatoid arthritis, suggests research published online in the Annals of the Rheumatic Diseases.

What’s more, such vapors, gases, and solvents seem to boost the detrimental impact of smoking and genetic susceptibility to the disease, the findings indicate.

Rheumatoid arthritis (RA) is a chronic autoimmune joint disorder characterized by painful and disabling inflammation. It affects up to 1% of the world’s population.

/* */