Toggle light / dark theme

The Next Generation of Humans: Nanobots

Part 1: the future of medicine: nanobots part 2: a new era in mental health: nanobots part 3: the healing power of nanobots part 4: the genetic and data-connected revolution: nanobots part 5: the end of plastic surgery: nanobots part 6: the fertility revolution: nanobots part 7: the job-specific human: nanobots part 8: the end of education as we know it: nanobots part 9: the rise of programmable matter: nanobots part 10: the next generation of humans: nanobots.

Nanotechnology is a rapidly evolving field with the potential to revolutionize medicine in the future. One of the most promising applications of nanotechnology is the use of nanobots in medicine. Nanobots are microscopic robots that can be programmed to perform specialized activities such as disease diagnosis and treatment. They can be used to diagnose and treat a wide range of conditions, including mental illnesses such as depression and anxiety, as well as physical injuries and illnesses.

One of the most interesting potential applications of nanobots in medicine is the treatment of mental illnesses. Mental illnesses are among the most common and devastating diseases of our time. They can be programmed to constantly map the brain and correct faults as they develop. Alzheimer’s disease may theoretically be treated if a person was implanted with nanobots at birth.

New Research Could Link Evolution of Complex Life to Genetic “Dark Matter”

Octopuses have fascinated scientists and the public with their remarkable intelligence, from using tools to engaging in creative play, problem-solving, and even escaping from aquariums. Now, their cognitive abilities may provide significant insight into understanding the evolution of complex life and cognition, including the human brain.

An international team of researchers from Dartmouth College and the Max Delbrück Center (MDC) in Germany has published a study in the journal Science Advances.

<em>Science Advances</em> is a peer-reviewed, open-access scientific journal that is published by the American Association for the Advancement of Science (AAAS). It was launched in 2015 and covers a wide range of topics in the natural sciences, including biology, chemistry, earth and environmental sciences, materials science, and physics.

Close Relationships With Parents Promote Healthier Brain Development in High-Risk Teens, Buffering Against Alcohol Use Disorder

Summary: Close and supportive parental relationships can help mitigate the genetic and environmental risk of developing alcohol use disorder for at-risk teens.

Source: state university of new york.

For teens at elevated risk of developing alcohol use disorder (AUD), close relationships with parents can help mitigate their genetic and environmental vulnerability, a new study suggests.

Prokaryotic Pangenomes Act as Evolving Ecosystems

Abstract. Understanding adaptation to the local environment is a central tenet and a major focus of evolutionary biology. But this is only part of the adaptionist story. In addition to the external environment, one of the main drivers of genome composition is genetic background. In this perspective, I argue that there is a growing body of evidence that intra-genomic selective pressures play a significant part in the composition of prokaryotic genomes and play a significant role in the origin, maintenance and structuring of prokaryotic pangenomes.

Improving Intelligence

Improving intelligence has preoccupied society since French psychologist Alfred Binet devised the first IQ test. Since then, the notion that intelligence can be calibrated has opened new avenues into figuring out how it can also be increased.

Psychological scientists have been on the front lines of modifying intelligence. So much intelligence is genetically determined, it is, to a large extent, hereditary. But there are still some areas in which it can be malleable.

Intelligence is generally divided into two categories: fluid intelligence and crystallized intelligence. Fluid intelligence is the ability to reason in an abstract way and solve problems. Someone who can come up with dozens of new uses for, say, a toothbrush would demonstrate superior fluid intelligence. And this is exactly the kind of intelligence that tends to diminish as we grow older. The acquisition of intellectual skills, or the ability to read and comprehend, is known as crystallized intelligence, and this form tends to improve as we age.

Q&A: The Ethics of Using Brain Implants to Upgrade Yourself

Anders Sandberg is “not technically a philosopher,” he tells IEEE Spectrum, although it is his job to think deeply about technological utopias and dystopias, the future of AI, and the possible consequences of human enhancement via genetic tweaks or implanted devices. In fact, he has a PhD in computational neuroscience. So who better to consult regarding the ethics of neurotech and brain enhancement?

Sandberg works as a senior research fellow at Oxford’s Future of Humanity Institute (which is helmed by Nick Bostrom, a leading AI scholar and author of the book Superintelligence that explores the AI threat). In a wide-ranging phone interview with Spectrum, Sandberg discussed today’s state-of-the-art neurotech, whether it will ever see widespread adoption, and how it could reshape society.

Wearable tech, AI and clinical teams join to change the face of trial monitoring

A multi-disciplinary team of researchers has developed a way to monitor the progression of movement disorders using motion capture technology and AI.

In two ground-breaking studies, published in Nature Medicine, a cross-disciplinary team of AI and clinical researchers have shown that by combining human data gathered from wearable tech with a powerful new medical AI technology they are able to identify clear movement patterns, predict future disease progression and significantly increase the efficiency of clinical trials in two very different rare disorders, Duchenne muscular dystrophy (DMD) and Friedreich’s ataxia (FA).

DMD and FA are rare, degenerative, that affect movement and eventually lead to paralysis. There are currently no cures for either disease, but researchers hope that these results will significantly speed up the search for new treatments.

DARPA Wants to Develop a Drug to Make People Resistant to Extreme Cold

Last week, Rice University in Houston announced that one of its assistant professors of bioengineering, Jerzy Szablowski, received a Young Faculty Award from DARPA to research non-genetic drugs that can “temporarily enhance the human body’s resilience to extreme cold exposure.”

Thermogenesis is the use of energy to create heat, and our bodies have two different ways of doing this. One is shivering, which we’re all familiar with. The other, which Szablowski simply calls non-shivering thermogenesis, involves burning off brown adipose tissue (BAT), or brow n fat.

This type of fat exists specifically to warm us up when we get cold; it stores energy and only activates in cold temperatures. Most of our body fat is white fat. It builds up when we ingest more calories than we burn and stores those calories for when we don’t get enough energy from food. An unfortunate majority of American adults have the opposite problem: too much white fat, which increases the risk of conditions like heart disease and Type 2 diabetes.

Cellular Reprogramming Extends Lifespan in Mice, Longevity Startup Says

Cellular reprogramming builds on the Nobel Prize-winning work of Shinya Yamanaka, who showed that adult cells could be transformed back into stem cells by exposing them to a specific set of genome-regulating proteins known as transcription factors. The Salk team’s innovation was to reduce the exposure times to the so-called Yamanaka factors, which they found could reverse epigenetic changes to the cells without reverting them to stem cells.

While the approach led to clear increases in lifespan in prematurely aging mice, the fact that no one had been able to replicate the result in healthy mice since then raised doubts about the approach. “Different groups have tried this experiment, and the data have not been positive so far,” Alejandro Ocampo, from the University of Lausanne in Switzerland, who carried out the original Salk experiments, told MIT Technology Review.

But now, Rejuvenate Bio claims that when they exposed healthy mice near the end of their lives to a subset of the Yamanaka factors, they lived for another 18 weeks on average, compared to just 9 weeks for those that didn’t undergo cellular reprogramming.