Toggle light / dark theme

On the other, because organisms share the same universal code, they’re vulnerable to outside attacks from viruses and other pathogens—and can transfer their new capabilities to natural organisms, even if it kills them.

Why not build a genetic firewall?

A recent study in Science did just that. The team partially reworked the existing genetic code into a “cipher” that normal organisms can’t comprehend. Similarly, the engineered bacteria lost its ability to read the natural genetic code. The tweaks formed a powerful language barrier between the engineered bacteria and natural organisms, isolating each from sharing genetic information with the other.

Join us on Patreon!
https://www.patreon.com/MichaelLustgartenPhD

TruDiagnostic Discount Link (Epigenetic Testing)
CONQUERAGING!
https://bit.ly/3Rken0n.

Bristle Discount Link (Oral microbiome quantification):
ConquerAging15
https://www.bmq30trk.com/4FL3LK/GTSC3/

Cronometer Discount Link (Daily diet tracking):

Here is what the ECG reports of the first patient with the pig heart say.

In January this year, the heart of a genetically modified pig was transplanted into a human for the first time. The patient, David Bennett, managed to survive for two months with the pig heart, and this unique organ transplant operation led to various exciting findings and further research work.

One recently published research reveals that the electrical conduction system (network of cells, signals, and nodes in a heart that collectively controls heart functions and heartbeat) of the genetically modified pig heart differs from that of an ordinary pig’s heart.


David Bennett, the 57-year-old man who became globally known as the first human to receive a genetically modified pig’s heart as a transplant has died in the hospital where he underwent the transplant and was recovering, according to a press release.

Summary: A genetic form of frontotemporal dementia is associated with abnormal lipid accumulation in the brain fueled by disrupted cell metabolism. The findings could pave the way for new targeted therapies for FTD.

Source: Harvard.

Dementia encompasses a range of neurodegenerative conditions that lead to memory loss and cognitive deficiencies and affect some 55 million people worldwide. Yet despite its prevalence, there are few effective treatments, in part because scientists still don’t understand how exactly dementia arises on a cellular and molecular level.

Matthew Cobb is a zoologist and author whose background is in insect genetics and the history of science. Over the past decade or so, as CRISPR was discovered and applied to genetic remodeling, he started to get concerned—afraid, actually—about three potential applications of the technology. He’s in good company: Jennifer Doudna, who won the Nobel Prize in Chemistry in 2020 for discovering and harnessing CRISPR, is afraid of the same things. So he decided to delve into these topics, and As Gods: A Moral History of the Genetic Age is the result.

Summing up fears

The first of his worries is the notion of introducing heritable mutations into the human genome. He Jianqui did this to three human female embryos in China in 2018, so the three girls with the engineered mutations that they will pass on to their kids (if they’re allowed to have any) are about four now. Their identities are classified for their protection, but presumably their health is being monitored, and the poor girls have probably already been poked and prodded incessantly by every type of medical specialist there is.

Turn.bio has announced that its proprietary cellular reprogramming technology was able to significantly increase the proliferative and cytotoxic potential of premanufactured CAR-T cells in vitro.

Turn.bio, a developer of mRNA-based cellular reprogramming technologies, has announced preliminary results from its current trial. The announcement was made by the company’s co-founder, Prof. Vittorio Sebastiano, at the New Frontiers of RNA Nanotherapeutics conference at Houston Methodist Research Institute. These results show that the company’s proprietary Epigenetic Reprogramming of Aging (ERA) technology greatly increases the fitness of CAR-T cells, which are widely used in modern immunotherapy.

T cell exhaustion is a big problem.

Join us on Patreon!
https://www.patreon.com/MichaelLustgartenPhD

TruDiagnostic Discount Link (Epigenetic Testing)
CONQUERAGING!
https://bit.ly/3Rken0n.

Bristle Discount Link (Oral microbiome quantification):
ConquerAging15
https://www.bmq30trk.com/4FL3LK/GTSC3/

Cronometer Discount Link (Daily diet tracking):

Artificial Intelligence (AI) is the mantra of the current era. The phrase is intoned by technologists, academicians, journalists and venture capitalists alike. As with many phrases that cross over from technical academic fields into general circulation, there is significant misunderstanding accompanying the use of the phrase. But this is not the classical case of the public not understanding the scientists — here the scientists are often as befuddled as the public. The idea that our era is somehow seeing the emergence of an intelligence in silicon that rivals our own entertains all of us — enthralling us and frightening us in equal measure. And, unfortunately, it distracts us.

There is a different narrative that one can tell about the current era. Consider the following story, which involves humans, computers, data and life-or-death decisions, but where the focus is something other than intelligence-in-silicon fantasies. When my spouse was pregnant 14 years ago, we had an ultrasound. There was a geneticist in the room, and she pointed out some white spots around the heart of the fetus. “Those are markers for Down syndrome,” she noted, “and your risk has now gone up to 1 in 20.” She further let us know that we could learn whether the fetus in fact had the genetic modification underlying Down syndrome via an amniocentesis. But amniocentesis was risky — the risk of killing the fetus during the procedure was roughly 1 in 300. Being a statistician, I determined to find out where these numbers were coming from.

Werner Syndrome and Hutchinson Gilford Progeria Syndrome are two examples of the rare genetic disorders known as progeroid syndromes that cause signs of premature aging in children and young adults. Patients with progeroid syndromes have pathologies and symptoms that are often linked to aging, including osteoporosis, cataracts, heart disease, and type II diabetes.

This aging is characterized by the gradual loss of nuclear architecture and an underlying tissue-specific genetic program, but the causes are unclear. Scientists have discovered a potential new target for treating these syndromes by preventing nuclear architecture loss.