Toggle light / dark theme

Gate’s team of scientists observed genetic changes in the CSF immune cells in older healthy individuals that made the cells appear more activated and inflamed with advanced age.

“The immune cells appear to be a little angry in older individuals,” Gate said. “We think this anger might make these cells less functional, resulting in dysregulation of the brain’s immune system.”

In the cognitively impaired group, inflamed T-cells cloned themselves and flowed into the CSF and brain as if they were following a radio signal, Gate said. Scientists found the cells had an overabundance of a cell receptor — CXCR6 — that acts as an antenna. This receptor receives a signal — CXCL16 — from the degenerating brain’s microglia cells to enter the brain.

To claim your matching donation with Givewell, go to https://www.givewell.org/isaac.
In the future, humanity may embrace genetic engineering and cybernetic augmentation of mind and body, but what does this Transhuman future look like? And should we embrace or resist these paths?

Visit our Website: http://www.isaacarthur.net.
Support us on Patreon: https://www.patreon.com/IsaacArthur.
Support us on Subscribestar: https://www.subscribestar.com/isaac-arthur.
Facebook Group: https://www.facebook.com/groups/1583992725237264/
Reddit: https://www.reddit.com/r/IsaacArthur/
Twitter: https://twitter.com/Isaac_A_Arthur on Twitter and RT our future content.
SFIA Discord Server: https://discord.gg/53GAShE

Listen or Download the audio of this episode from Soundcloud: Episode’s Audio-only version: https://soundcloud.com/isaac-arthur-148927746/transhumanism-humanitys-future.
Episode’s Narration-only version: https://soundcloud.com/isaac-arthur-148927746/transhumanism-…ation-only.

Credits:
Transhumanism & Humanity’s Future.
Science & Futurism with Isaac Arthur.
Episode 375, December 29, 2022
Written, Produced & Narrated by Isaac Arthur.

Editors:
Briana Brownell.
Donagh Broderick.
Keith Blockus.
Lukas Konecny.

Graphics:

Research at the Institute of Molecular Biology and Biotechnology (IMBB) of the Foundation for Research and Technology-Hellas (FORTH), published today in the journal Nature Aging, reveals a fundamental quality control mechanism that operates in cells to safeguard the integrity and function of the nucleus. By maintaining nuclear homeostasis, this molecular mechanism contributes critically to promote longevity and fertility.

IMBB researchers Dr. Margarita-Elena Papandreou and Dr. Georgios Konstantinidis, headed by Dr. Nektarios Tavernarakis (Professor at the Medical School, University of Crete, and Chairman of the Board at FORTH), discovered that recycling of nuclear and nucleolar components via autophagy delays aging of , and sustains the immortality of germ cells, which are required for reproduction.

The nucleus is the central organelle of all eukaryotic cells that contains the (DNA), which determines cellular identity and function. During aging and in cancer cells, the ultrastructure of the nucleus is dramatically altered. Moreover, progressive and pronounced deterioration of the nuclear architecture is a common and conserved feature of progeria and numerous other disorders associated with aging.

Although genetically modified foods still get a bit of a bad rap, there are actually many good reasons why modifying an organism’s genetics may be worthwhile. For example, many breeds of genetically modified foods have made them more resistant to disease.

It’s also possible to modify foods to make them more nutritious. Take, for example, golden rice. This grain was engineered to have higher levels of vitamin A in order to tackle deficiencies of this nutrient in impoverished countries.


A purple tomato, created using genetic modification, may be available to buy in the U.S. as soon as 2023.

Blood pressure genetic risk score can predict risk of heart attacks and stroke.

Nearly half of all American adults have elevated blood pressure or hypertension and high blood pressure contributes to 65 percent of cardiovascular deaths in the US. Now researchers at University of Alabama at Birmingham have used genomic information to create a blood pressure “genetic risk score”.

Longevity. Technology: Cardiovascular disease is the leading cause of death worldwide and is responsible for a significant burden of morbidity and mortality. As people age, their risk of developing CVD increases, making it a major contributor to the morbidity and mortality associated with aging. That there is a pressing need for research into CVD in order to identify effective strategies for prevention and treatment would seem obvious, but this research is particularly important as the global population is aging and the prevalence of CVD is expected to rise with it. However, having such an enormous number of people at risk brings extra problems – how can risks be quantified and determined on an individual basis? The answer could lie in understanding and leveraging genetic data.

Join us on Patreon!
https://www.patreon.com/MichaelLustgartenPhD

TruDiagnostic Discount Link (Epigenetic Testing)
CONQUERAGING!
https://bit.ly/3Rken0n.

Bristle Discount Link (Oral Microbiome Quantification):
ConquerAging15
https://www.bmq30trk.com/4FL3LK/GTSC3/

Quantify Discount Link (At-Home Blood Testing):
https://getquantify.io/mlustgarten.

Cronometer Discount Link (Daily Diet Tracking):
https://shareasale.com/r.cfm?b=1390137&u=3266601&m=61121&urllink=&afftrack=

If you’d like to support the channel, you can do that with the website.

Professor Carmit Levy. Credit: Tel Aviv University.

Professor Carmit Levy from the Department of Human Genetics and Biochemistry and Dr. Yftach Gepner from the School of Public Health and the Sylvan Adams Sports Institute at TAU’s Sackler Faculty of Medicine conducted the study. Prof. Levy notes that the new research has resulted in a very important discovery by merging scientific know-how from different schools at TAU, which may help avoid metastatic cancer, Israel’s top cause of death. The study was recently published on the cover of the journal of Cancer Research.

Prof. Levy and Dr. Gepner: “Studies have demonstrated that physical exercise reduces the risk for some types of cancer by up to 35%. This positive effect is similar to the impact of exercise on other conditions, such as heart disease and diabetes. In this study we added new insight, showing that high-intensity aerobic exercise, which derives its energy from sugar, can reduce the risk of metastatic cancer by as much as 72%. If so far the general message to the public has been ‘be active, be healthy’, now we can explain how aerobic activity can maximize the prevention of the most aggressive and metastatic types of cancer.”

We may have parted ways with our primate cousins millions of years ago, but a new study shows just how human beings continue to evolve in ways we never imagined.

Researchers from Biomedical Sciences Research Center “Alexander Fleming” (BSRC Flemming) in Greece and Trinity College Dublin, Ireland, have identified 155 genes in our genome that emerged from small, non-coding sections of DNA. Many appear to play a critical role in our biology, revealing how completely novel genes can rapidly evolve to become essential.

New genes typically arise through well known mechanisms like duplication events, where our genetic machinery accidently produces copies of pre-existing genes that can end up suiting new functions over time.

In the four years since an experiment by disgraced scientist He Jiankui resulted in the birth of the first babies with edited genes, numerous articles, books and international commissions have reflected on whether and how heritable genome editing—that is, modifying genes that will be passed on to the next generation—should proceed. They’ve reinforced an international consensus that it’s premature to proceed with heritable genome editing. Yet, concern remains that some individuals might buck that consensus and recklessly forge ahead—just as He Jiankui did.