Toggle light / dark theme

The lone volunteer in a gene-editing study targeting a rare form of Duchenne muscular dystrophy likely died after having a reaction to the virus that delivered the therapy in his body, researchers concluded in an early study.

Terry Horgan, 27, of Montour Falls, New York, died last year during one of the first tests of a gene-editing treatment designed for one person. Some scientists wondered if the gene-editing tool CRISPR played a part in his death. The tool has transformed genetic research, sparked the development of dozens of experimental drugs, and won its inventors the Nobel Prize in 2020.

But researchers said the virus — one used to carry treatment into the body because it doesn’t usually make people sick — combined with his condition, triggered the problems that ultimately killed him.

Jo Cameron is a 75-year-old Scottish woman who has gone through life without experiencing significant pain of any kind. Even major surgery and childbirth failed to deliver the discomfort most of us would experience.

According to an interview with the BBC in 2019, Cameron only knows her skin is burning if she smells or sees it. To her, suffering is nothing more than an abstract concept.

The quirk that Cameron was born with is shared with just a few other people in th e world. Called congenital analgesia, it is a one-in-a-million condition with multiple genetic causes that may come with other symptoms, such as sweating more or having no sense of smell.

Geneticists have unearthed a major event in the ancient history of sturgeons and paddlefish that has significant implications for the way we understand evolution. They have pinpointed a previously hidden “whole genome duplication” (WGD) in the common ancestor of these species, which seemingly opened the door to genetic variations that may have conferred an advantage around the time of a major mass extinction some 200 million years ago.

The big-picture finding suggests that there may be many more overlooked, shared WGDs in other species before periods of extreme environmental upheaval throughout Earth’s tumultuous history.

The research, led by Professor Aoife McLysaght and Dr. Anthony Redmond from Trinity College Dublin’s School of Genetics and Microbiology, has just been published in Nature Communications.

https://youtu.be/289mVc7PDsU

This video explores Brain Computer Interfaces in 2050. Watch this next video called “Transhumanism: 20 Ways It Will Change The World:” https://youtu.be/qcsihbGnXgE.
► Udacity: Up To 75% Off All Courses (Biggest Discount Ever): https://bit.ly/3j9pIRZ
► Jasper AI: Write 5x Faster With Artificial Intelligence: https://bit.ly/3MIPSYp.

Official Discord Server: https://discord.gg/R8cYEWpCzK
Patreon Page: https://www.patreon.com/futurebusinesstech.

💡 Future Business Tech explores the future of technology and the world.

Examples of topics I cover include:
• Artificial Intelligence & Robotics.
• Virtual and Augmented Reality.
• Brain-Computer Interfaces.
• Transhumanism.
• Genetic Engineering.

SUBSCRIBE: https://bit.ly/3geLDGO

Disclaimer:

The root cause is frustratingly simple: one gene mutation, which affects a critical protein that helps support skin integrity. The single genetic error makes the illness a perfect candidate for gene therapy. Yet with the skin already fragile, injections—a current standard for gene therapy—are hard to tolerate.

What about a genetic moisturizer instead?

This month, the FDA approved the first rub-on gene therapy. Similar to aloe vera for treating sunburns, the therapy comes in a gel that’s gently massaged onto blisters and wounds to help with healing. Dubbed Vyjuvek, it directly delivers healthy copies of the mutated gene onto damaged skin. An alternative version is configured into eye drops to reconstruct the eye’s delicate architecture to better support sight.

😗😁


In the pursuit of extending healthy human lifespans, scientists have achieved a remarkable breakthrough that marks a significant milestone in the field. Researchers from Taipei Medical University in Taiwan have uncovered a genetic modification in mice that can empower cancer-killing cells, increasing their effectiveness by two to seven times while extending their lifespan by up to 20 percent.

Building upon last year’s groundbreaking study, the scientists have now successfully replicated these extraordinary outcomes in ordinary mice through a single transplant of blood stem cells. The findings, published in the scientific journal Cold Spring Harbor Protocols, hold immense importance, according to Che-Kun James Shen, the lead researcher of the study. He believes that these findings could have profound implications for human health and anticipates that clinical trials could commence as early as the end of this year or next year.

The initial discovery involved identifying an amino acid, known as KLF1, that, when altered, preserves the youthful characteristics of the mice. This includes improved motor function, enhanced learning and memory, as well as more effective anti-cancer cells. Additionally, the mice exhibited darker and shinier hair, and a significant reduction in fibrosis—a process associated with impaired organ functioning that occurs during aging.

New research from UCL, investigating the biology of a rare genetic mutation that enables carrier Jo Cameron to live virtually without pain and fear while also healing quickly, discovered that the mutation in FAAH-OUT gene ‘turns down’ FAAH gene expression, affecting molecular pathways related to wound healing and mood, thereby offering potential new targets for drug discovery.

New research from University College London (UCL) has unraveled the biology behind a unique genetic mutation that results in its carrier experiencing minimal pain, enhanced healing, and lower levels of anxiety and fear.

Published in the journal Brain, the research is a follow-up to the team’s 2019 discovery of the FAAH-OUT gene and its rare mutations, which make Jo Cameron almost immune to pain, and devoid of fear and anxiety. The latest study elucidates how this mutation reduces the expression of the FAAH gene and impacts other molecular pathways associated with mood and wound healing. The insights garnered from these findings could potentially pave the way for novel drug targets and foster further research in these domains.

Age-related hearing loss impacts one in three adults between the ages of 64 and 75 in the US, and around half of these numbers are down to genes.

The extra kicker, though, is that because hearing involves a complex genetic toolkit, it also makes this kind of hearing loss incredibly difficult to treat.

A team of researchers has for the first time targeted age-related genetic hearing loss in a much older cohort of mice, which had a mutation of the human transmembrane serine protease 3 (TMPRSS3) gene that results in autosomal recessive deafness 8/10 (DFNB8/DFNB10).