Menu

Blog

Archive for the ‘genetics’ category: Page 128

Feb 11, 2023

One Third of Americans Would Use Genetics Tech to Make Their Offspring Smarter, Study Finds

Posted by in categories: bioengineering, biotech/medical, genetics

Of the respondents, 28 percent said they were more likely than not to use gene editing to make their babies smarter, and 38 percent said they’d use polygenic screening. The researchers also noted what they called a bandwagon effect, where people who were told something along the lines of “everyone else is doing it” were more likely to say they’d do it too. This is logical; our comfort with decisions is buoyed by a sense that others in our shoes would choose similarly.

It’s important to note, though, that the survey made it clear that genetically enhancing embryos didn’t come with a guaranteed result of a smarter kid. “In this study, we stipulated a realistic effect—that each service would increase the odds of having a child who attends a top-100 college by 2 percentage points, from 3 percent to 5 percent odds—and lots of people are still interested,” said Michelle N. Meyer, chair of the Department of Bioethics and Decision Sciences at Geisinger and first author of the article.

The numbers—28 and 38 percent—don’t seem high. That’s a little below and a little above one-third of total respondents who would use the technologies. But imagine walking around in a world where one out of every three people had had their genes tweaked before birth. Unsettling, no? The researchers said their results point to substantial and growing interest in genetic technologies for offspring enhancement, and that now is the time to get a national conversation going around regulations.

Feb 10, 2023

Dr. Renee Wegrzyn, Ph.D. — ARPA-H — Transformative, Sustainable, Equitable Health Solutions For All

Posted by in categories: bioengineering, biotech/medical, genetics, health, security

Dr. Renee Wegrzyn, Ph.D. is the inaugural director of the Advanced Research Projects Agency for Health (ARPA-H — https://arpa-h.gov/), an agency that supports the development of high-impact research to drive biomedical and health breakthroughs to deliver transformative, sustainable, and equitable health solutions for everyone. ARPA-H’s mission focuses on leveraging research advances for real world impact.

Previously, Dr. Wegrzyn served as a vice president of business development at Ginkgo Bioworks and head of Innovation at Concentric by Ginkgo, where she focused on applying synthetic biology to outpace infectious diseases—including Covid-19—through biomanufacturing, vaccine innovation and biosurveillance of pathogens at scale.

Continue reading “Dr. Renee Wegrzyn, Ph.D. — ARPA-H — Transformative, Sustainable, Equitable Health Solutions For All” »

Feb 10, 2023

Recovering “Hidden Knowledge” — How an Asthma Medication Could Restore Memories

Posted by in categories: biotech/medical, genetics

Students often sacrifice sleep to study for exams, but lack of sleep can negatively impact memory. Now, University of Groningen neuroscientist Robbert Havekes has found that sleep deprivation hinders recall, not retention of information. Havekes and his team used optogenetics and the drug roflumilast to make “hidden knowledge” obtained while sleep-deprived accessible again days later. Their findings were recently published in the journal Current Biology.

Havekes, associate professor of Neuroscience of Memory and Sleep at the University of Groningen, the Netherlands, and his team have extensively studied how sleep deprivation affects memory processes. “We previously focused on finding ways to support memory processes during a sleep deprivation episode”, says Havekes.

However, in his latest study, his team examined whether amnesia as a result of sleep deprivation was a direct result of information loss, or merely caused by difficulties retrieving information.

Feb 10, 2023

How a single-gene change led to a new species of monkeyflower

Posted by in categories: evolution, food, genetics

Monkeyflowers glow in a rich assortment of colors, from yellow to pink to deep red-orange. But about 5 million years ago, some of them lost their yellow. In the Feb. 10 issue of Science, UConn botanists explain what happened genetically to jettison the yellow pigment, and the implications for the evolution of species.

Monkeyflowers are famous for growing in harsh, mineral-rich soils where other plants can’t. They are also famously diverse in shape and color. Monkeyflowers also provide a textbook example of how a single-gene change can make a . In this case, a monkeyflower species lost the yellow pigments in the petals but gained pink about 5 million years ago, attracting bees for pollination. Later, a descendent species accumulated mutations in a gene called YUP that recovered the yellow pigments and led to production of red flowers. The species stopped attracting bees. Instead, hummingbirds pollinated it, isolating the red flowers genetically and creating a new species.

UConn botanist Yaowu Yuan and postdoctoral researcher Mei Liang (currently a professor at South China Agricultural University), with collaborators from four other institutes, have now shown exactly which gene changed to prevent monkeyflowers from making yellow. Their research, published this week in Science, adds weight to a theory that new genes create phenotypic diversity and even new species.

Feb 9, 2023

The First Gene-Edited Babies Are Supposedly Alive and Well, Says Guy Who Edited Them

Posted by in categories: biotech/medical, genetics

But the disgraced CRISPR scientist admits his mistakes: “I did it too quickly.”

Feb 9, 2023

Bioelectric Networks: Taming the Collective Intelligence of Cells for Regenerative Medicine

Posted by in categories: bioengineering, biotech/medical, genetics, information science, life extension, robotics/AI

Seminar summary: https://foresight.org/summary/bioelectric-networks-taming-th…-medicine/
Program & apply to join: https://foresight.org/biotech-health-extension-program/

Foresight Biotech & Health Extension Meeting sponsored by 100 Plus Capital.

Continue reading “Bioelectric Networks: Taming the Collective Intelligence of Cells for Regenerative Medicine” »

Feb 8, 2023

Scientists Are About to Decide When to Stop Editing the Perfect Human

Posted by in category: genetics

The possibilities are practically endless. So are the ethical concerns.

Feb 8, 2023

More people are living to be 100: Here’s why

Posted by in categories: genetics, life extension

Does the secret to reaching extreme old age lie in lifestyle or genetics? Story at a glance America’s population is aging, with more people living to be 100. Reaching extreme old age depends on multiple factors like location, gender, lifestyle and parental age of death.

Feb 7, 2023

Scientist Who Gene Edited Human Babies Says Mistakes Were Made

Posted by in categories: biotech/medical, genetics, law enforcement

Chinese geneticist He Jiankui rocked the scientific world with his gene-edited baby experiments back in 2018, a highly controversial use of the technology that ended up sending him to a three-year stint in prison for illegal medical practices.

Now, just under a year after being released, He has some regrets about rushing into the experiments.

“I did it too quickly,” He told the South China Morning Post in a new interview.

Feb 7, 2023

Potential therapeutic target for schizophrenia identified

Posted by in categories: biotech/medical, genetics, neuroscience

Targeting calcium signaling in neurons represents a promising therapeutic approach for treating a rare form of schizophrenia, according to a Northwestern Medicine study published in Biological Psychiatry.

“This is the first time that human are made and characterized from with the 16p11.2 duplication, one of the most prominent genetic risk factors in schizophrenia, and the first time that signaling is found as a central abnormality in schizophrenia neurons,” said Peter Penzes, Ph.D., the Ruth and Evelyn Dunbar Professor of Psychiatry and Behavioral Sciences and senior author of the study.

Schizophrenia is characterized by auditory and visual hallucinations, delusions, and trouble with forming and sorting thoughts, which severely impacts productivity and overall quality of life. The disease, which affects roughly one percent of the , has strong genetic associations, however the exact genes involved are unknown.