Toggle light / dark theme

An interdisciplinary team of mathematicians, engineers, physicists, and medical scientists have uncovered an unexpected link between pure mathematics and genetics, that reveals key insights into the structure of neutral mutations and the evolution of organisms.

Number theory, the study of the properties of positive integers, is perhaps the purest form of mathematics. At first sight, it may seem far too abstract to apply to the natural world. In fact, the influential American number theorist Leonard Dickson wrote ‘Thank God that number theory is unsullied by any application.’

And yet, again and again, number theory finds unexpected applications in science and engineering, from leaf angles that (almost) universally follow the Fibonacci sequence, to modern encryption techniques based on factoring prime numbers. Now, researchers have demonstrated an unexpected link between number theory and evolutionary genetics.

Genome editing is a powerful breeding technique that introduces mutations into specific gene sequences in genomes. For genome editing in higher plants, nucleotides for artificial nuclease (e.g. TALEN or CRISPR-Cas9) are transiently or stably introduced into the plant cells. After the introduction of mutations by artificial nucleases, it is necessary to select lines that do not contain the foreign nucleotides to overcome GMO regulation; however, there is still no widely legally authorized and approved method for detecting foreign genes in genome-edited crops. Recently, k-mer analysis based on next-generation sequencing (NGS) was proposed as a new method for detecting foreign DNA in genome-edited agricultural products. Compared to conventional methods, such as PCR and Southern hybridization, in principle, this method can detect short DNA fragments with high accuracy.

The discipline of systems chemistry deals with the analysis and synthesis of various autocatalytic systems and is therefore closely related to the study of the origin of life, since it investigates systems that can be considered as a transition between chemical and biological evolution: more complex than simple molecules, but simpler than living cells.

Tibor Gánti described the theory of self-replicating microspheres as early as 1978. These still lacked , but concealed within their membranes an autocatalytic metabolic network of small molecules, isolated (compartmentalized) within their membranes.

As the autocatalytic process takes place, the membrane-building material is also produced, leading to the division of the sphere. This system may appear to be a , and although it lacks genetic material, this can only be verified experimentally. These microspheres can be considered as “infrabiological” , since they do not reach the level of biological organization, but they exceed the complexity of normal chemical reactions.

A protein famed among scientists and clinicians for its ability to suppress the development of many types of tumors may just be moonlighting as a cancer fighter, a recent study by researchers at Stanford Medicine found. The study, conducted in laboratory mice, suggests that the protein, p53, instead evolved to promote the repair of tissues and cells after injury.

The surprising finding is like learning that your favorite bit actor is actually an Oscar-winning director who dabbles in performance on the weekends.

“This turns what we thought we knew about p53 on its head,” said Laura Attardi, Ph.D., professor of radiation oncology and of genetics. “We need to consider that p53’s role as a tumor suppressor may be secondary to a more basic role in repairing damage to tissues.”

Join us on Patreon! https://www.patreon.com/MichaelLustgartenPhD

Discount Links:
At-Home Metabolomics: https://www.iollo.com?ref=michael-lustgarten.
Use Code: CONQUERAGING At Checkout.

NAD+ Quantification: https://www.jinfiniti.com/intracellular-nad-test/
Use Code: ConquerAging At Checkout.

Epigenetic Testing: https://trudiagnostic.com/?irclickid=U-s3Ii2r7xyIU-LSYLyQdQ6…M0&irgwc=1

The transfer of a neurotransmitter from one type of skin cell to another (melanocytes to keratinocytes) altered electrical activity and promoted melanoma initiation in preclinical models, according to results published in Cancer Discovery, a journal of the American Association for Cancer Research.

Melanoma is a deadly form of skin cancer that develops in melanin-containing skin cells known as melanocytes. An intrinsic feature of melanocytes is their ability to secrete melanin-containing vesicles to surrounding skin cells called keratinocytes to give skin its color.

While approximately half of all melanomas harbor mutations in the BRAF gene, these mutations are present in many benign skin lesions as well.

There are many microbes in our environment; many are harmless, some perform important functions, and some may pose a threat. Aspergillus fumigatus, for example, is a fungus that can be often be found in soil, as well as decaying organic matter; it has a crucial role in recycling carbon and nitrogen on our planet. A. fumigatus is also widely distributed in the air, so on average, people probably inhale a few hundred spores of A. fumigatus every day. This fungus is highly adaptive, and it can also evade weakened immune defenses in immunocompromised individuals to cause lung infections, called Aspergillosis. There are limited treatment options for this disease, and it’s difficult to treat effectively.

Scientists have now analyzed genetic data from about 250 strains of this fungus, and data from 40 Aspergillosis patients that characterized the lung microbiomes of these individuals. This showed that when people are infected with A. fumigatus, the composition of their lung microbiome begins to change dramatically. The findings have been reported in Nature Communications.

The naked mole rat lives much longer than iI’s than other members of its species. Can it’s ability to repair DNA and fold proteins be employed in Humans to extend our lifespan?


Several animal species are considered to exhibit what is called negligible senescence, i.e. they do not show signs of functional decline or any increase of mortality with age. Recent studies in naked mole rat and long-lived sea urchins showed that these species do not alter their gene-expression profiles with age as much as other organisms do. This is consistent with exceptional endurance of naked mole rat tissues to various genotoxic stresses. We conjectured, therefore, that the lifelong transcriptional stability of an organism may be a key determinant of longevity. We analyzed the stability of a simple genetic-network model and found that under most common circumstances, such a gene network is inherently unstable. Over a time it undergoes an exponential accumulation of gene-regulation deviations leading to death.

A team at Nottingham Trent University analyzed the full set of more than 11,000 gene transcripts inside muscle cells, finding that the ‘development pathways’—the different ways in which genes work together to regenerate muscle—become weakened in aged cells.

The study may help to shed some light on why take longer to recover from as we age. The study is published in the Journal of Tissue Engineering and Regenerative Medicine.

The researchers developed a new approach to examine in vitro in the laboratory to enable them to observe the different molecular mechanisms that drive aging.