The tool — called the Cryosection Histopathology Assessment and Review Machine, or CHARM — studies images to quickly pick out the genetic profile of a kind of tumor called glioma, a process that currently takes days or weeks.
Category: genetics – Page 119
Discover how THALES collaborates with the CNRS to identify new genetic markers leading to the development of pediatric cancers, thereby contributing to the improvement of patient care.
Venture Investing To Catalyze The Next Generation Of Founder-Led, Longevity Biotech Companies — Dr. Alex Colville, Ph.D., Co-Founder and General Partner — age1.
Dr. Alex Colville, Ph.D. is Co-Founder and General Partner of age1 (https://age1.com/), a venture capital firm focused on catalyzing the next generation of founder-led, longevity biotech companies, with a strategy of building a community of visionaries advancing new therapeutics, tools, and technologies targeting aging and age-related diseases.
With a recent initial closing of US$35 million, age1 will be focusing on founders and companies at the earliest stages of first-money in, pre-seed and seed funding, and is resourced to continue to support companies through later rounds.
Dr. Colville previously established the biotech arm of Starbloom Capital and served as founding Chief of Staff of Amaranth Foundation, where he led: the foundation’s support of skilled researchers and ambitious moonshot projects in the longevity field, and helped to advance their lobbying efforts; the TIME Initiative (a group with mission to activate undergraduate students’ interest in aging biology); the Marine Biology Laboratory Biology of Aging Summer Course, among other programs.
Dr. Colville completed his Ph.D. in Genetics at Stanford University studying the biology of aging in Dr. Thomas Rando’s lab while consulting for several family offices, the R&D team of Rubedo Life Sciences, and the business development team of Maze Therapeutics. Prior to his Ph.D., while at Northeastern University completing his Bachelor of Science (B.S.) in Chemical Engineering with a Minor in Biochemical Engineering, he advised pharma companies as a management consultant at Putnam Associates, a boutique life sciences consulting firm.
Professor René Ketting’s team at the Institute of Molecular Biology (IMB) in Mainz, Germany, along with Dr. Sebastian Falk’s group at the Max Perutz Labs in Vienna, Austria, have discovered a new enzyme, PUCH, which plays a key role in preventing the spread of parasitic DNA
DNA, or deoxyribonucleic acid, is a molecule composed of two long strands of nucleotides that coil around each other to form a double helix. It is the hereditary material in humans and almost all other organisms that carries genetic instructions for development, functioning, growth, and reproduction. Nearly every cell in a person’s body has the same DNA. Most DNA is located in the cell nucleus (where it is called nuclear DNA), but a small amount of DNA can also be found in the mitochondria (where it is called mitochondrial DNA or mtDNA).
George Church at his most optimistic. June 1, 2022.
Dr George Church talks about combination therapies for age reversal, recently published papers from his lab and expresses his wish on developing inexpensive gene therapies like vaccine that can be equitably distributed to human.
Dr George Church is the Robert Winthrop Professor of Genetics at Harvard Medical School, a Professor of Health Sciences and Technology at Harvard and the Massachusetts Institute of Technology (MIT), and a core faculty member of the Wyss Institute.
Same as Dr David Sinclair, Dr George Church currently runs the Church Lab at Harvard Medical School. Both labs collaborate many projects together especially on age reversal topics. Dr Church also directs the Personal Genome Project, a long-term cohort study that allows scientists to connect human genetic information (human DNA sequence, gene expression, associated microbial sequence data, and more) with human trait information (medical information, biospecimens, and physical traits) and environmental exposures.
DISCLAIMER: Please note that none of the information in this video constitutes health advice or should be substituted in lieu of professional guidance. The video content is purely for informational purposes.
Join us on Patreon! https://www.patreon.com/MichaelLustgartenPhD
Discount Links:
At-Home Metabolomics: https://www.iollo.com?ref=michael-lustgarten.
Use Code: CONQUERAGING At Checkout.
NAD+ Quantification: https://www.jinfiniti.com/intracellular-nad-test/
Use Code: ConquerAging At Checkout.
Epigenetic Testing: https://trudiagnostic.com/?irclickid=U-s3Ii2r7xyIU-LSYLyQdQ6…M0&irgwc=1
Use Code: CONQUERAGING
Oral Microbiome: https://www.bristlehealth.com/?ref=michaellustgarten.
Enter Code: ConquerAging.
At-Home Blood Testing (SiPhox Health): https://getquantify.io/mlustgarten.
A new compound called d16 that reduces tumor growth and overcomes treatment resistance in mutant p53-bearing cancers has been developed by researchers at the Baylor College of Medicine. Their findings testing the compound, published in the journal Cancer Research Communications, suggests the new compound could be used in combination therapies to provide more effective treatment against these kinds of cancer.
“One of the most common alterations in many human cancers are mutations in p53, a gene that normally provides one of the most powerful shields against tumor growth,” says Helena Folly-Kossi, PhD, a postdoctoral associate in Weei-Chin Lin’s lab at Baylor and the study’s first author. “Mutations that alter the normal function of p53 can promote tumor growth, cancer progression and resistance to therapy, which are associated with poor prognosis. It is important to understand how p53 mutations help cancer grow to develop therapies to counteract their effects.”
According to Lin, finding ways to target p53 mutations directly as a form of therapy for cancer has been difficult. His lab has been working for many years to not interfere directly with p53, but rather to identify vulnerabilities in the cells carrying p53 mutations that they could target to prevent cancer growth. “One of the challenges has been to develop drugs that act on mutant p53 directly. Some of these drugs are under development, but they appear to be toxic,” he said.
Researchers at Baylor College of Medicine and Rice University received a grant for more than $3.9 million over five years from the National Institutes of Health’s Office of Research Infrastructure Programs to establish the Baylor/Rice Genome Editing Testing Center (GETC). The new center will assist investigators from across the country with somatic cell genome editing experiments in mouse models.
Somatic cell genome editing, the ability to edit DNA within the body’s non-reproductive cells, is a promising potential treatment for the most severe human diseases. Over the last decade, significant effort has gone into developing more effective genome editing systems and methods of delivery to specific cells and organs. However, many of these new technologies do not progress to use in humans because there is insufficient evidence from animal models supporting their effectiveness.
“Our center will provide mouse model resources and genome editing testing pipelines to researchers who are developing new genome editing and delivery technologies but need assistance with conducting preclinical animal studies,” said Dr. Jason Heaney, co-principal investigator and associate professor of molecular and human genetics at Baylor. “Our goal is to help generate the animal model data needed to demonstrate the therapeutic potential of these cutting-edge technologies.”
TWITTER https://twitter.com/Transhumanian.
PATREON https://www.patreon.com/transhumania.
BITCOIN 14ZMLNppEdZCN4bu8FB1BwDaxbWteQKs8i.
ETHEREUM 0x1f89b261562C8D4C14aA01590EB42b2378572164.
LITECOIN LdB94n8sTUXBto5ZKt82YhEsEmxomFGz3j.
The last 2 questions and the answers are great. The first starts at 30 minutes. And I like his answer to the 2nd question especially, the time is 33:54. “What is giving me great hope is that we’re entering the phases where we have more than enough tools to get really get close to escape velocity.”
Genome Engineering for Healthy Longevity – George Church at Longevity Summit Dublin 2023.
#GeorgeChurch #GenomeEngineering #HealthyLongevity #LongevitySummitDublin2023 #AgingResearch #DublinConference #LongevityScience #BiomedicalEngineering #GeneticModification #DublinTalks #GenomicInnovation #MedicalScience #LongevityResearch #PrecisionMedicine #AgingInterventions #Healthspan #GenomeEditing #AntiAging #LongevityInsights #Genetics #Innovation