Toggle light / dark theme

Weaker Atlantic currents bring more oxygen to tropical ocean’s shallow depths

How is ventilation at various depth layers of the Atlantic connected and what role do changes in ocean circulation play? Researchers from Bremen, Kiel and Edinburgh have pursued this question and their findings have now been published in Nature Communications.

Salt water in the oceans is not the same everywhere; there are water layers that have different salinities and temperatures. The phenomenon of thermohaline circulation—which results from the differences in density caused by variations in temperature and salinity—drives the Atlantic Meridional Overturning Circulation (AMOC), among other current patterns. Near the surface, however, ocean circulation is also influenced by winds, which are responsible for producing the large subtropical gyres in the Atlantic, both on the northern and southern sides of the equator.

These gyres play an important role in because they provide organisms on the sea floor with oxygen, which is then consumed in part by the decomposition of organic matter. If there is a paucity of fresh, cold, and oxygen-rich water transported in to ventilate these areas, so to speak, oxygen minimum zones result.

Suspended lithium niobate acoustic resonators with Damascene electrodes for radiofrequency filtering

Data rates and volume for mobile communication are ever-increasing with the growing number of users and connected devices. With the deployment of 5G and 6G on the horizon, wireless communication is advancing to higher frequencies and larger bandwidths enabling higher speeds and throughput. Current micro-acoustic resonator technology, a key component in radiofrequency front-end filters, is struggling to keep pace with these developments. This work presents an acoustic resonator architecture enabling multi-frequency, low-loss, and wideband filtering for the 5G and future 6G bands located above 3 GHz. Thanks to the exceptional performance of these resonators, filters for the 5G n77 and n79 bands are demonstrated, exhibiting fractional bandwidths of 25% and 13%, respectively, with low insertion loss of around 1 dB. With its unique frequency scalability and wideband capabilities, the reported architecture offers a promising option for filtering and multiplexing in future mobile devices.


Stettler, S., Villanueva, L.G. Suspended lithium niobate acoustic resonators with Damascene electrodes for radiofrequency filtering. Microsyst Nanoeng 11, 131 (2025). https://doi.org/10.1038/s41378-025-00980-w.

Download citation.

/* */