Toggle light / dark theme

Only 2% of Alzheimer’s is 100% genetic. The rest is up to your daily habits.

Up Next ► 4 ways to hack your memory https://youtu.be/SCsztDMGP7o.

People want a perfect memory. They wish that they can remember everything that they want to remember. But it doesn’t work like that.

Most people over the age of 50 think that forgetting someone’s name or forgetting why they went into the kitchen is a sign of Alzheimer’s. It isn’t. Most of our forgetfulness is perfectly normal.

It’s no secret that foundation models have transformed AI in the digital world. Large language models (LLMs) like ChatGPT, LLaMA, and Bard revolutionized AI for language. While OpenAI’s GPT models aren’t the only large language model available, they have achieved the most mainstream recognition for taking text and image inputs and delivering human-like responses — even with some tasks requiring complex problem-solving and advanced reasoning.

ChatGPT’s viral and widespread adoption has largely shaped how society understands this new moment for artificial intelligence.

The next advancement that will define AI for generations is robotics. Building AI-powered robots that can learn how to interact with the physical world will enhance all forms of repetitive work in sectors ranging from logistics, transportation, and manufacturing to retail, agriculture, and even healthcare. It will also unlock as many efficiencies in the physical world as we’ve seen in the digital world over the past few decades.

Soybean (Glycine max) is one of the most economically and societally impactful crops in the world, providing a significant percentage of all protein for animal consumption on a global scale, and playing key roles in oil production, manufacturing, and biofuel applications. In 2022, an estimated 4.3 billion bushels of soybeans were produced in the United States, a decrease of almost 200 million bushels compared to the previous year.

To keep up with the growing demand for soy-based animal feed, the USDA projects acreage will increase by 19.6% by 2032. Hybrid breeding in soybean has the potential to increase the productivity of one of the most planted and consumed in the Americas, yet it has remained largely unexplored.

New research by scientists at the Donald Danforth Plant Science Center and Cornell University provides a key enabling technology to produce obligate outcrossing in soybean. The newly published study, “Introduction of barnase/barstar in soybean produces a rescuable male sterility system for hybrid breeding” in the Plant Biotechnology Journal, has revealed that obligate outcrossing with the Barnase/Barstar lines provides a new resource that can be used to amplify hybrid seed sets, enabling large-scale trials for heterosis in this major crop.

Another good use for AI. Fighting disinformation.


About 60% of adults in the US who get their news through social media have, largely unknowingly, shared false information, according to a poll by the Pew Research Center. The ease at which disinformation is spread and the severity of consequences it brings — from election hacking to character assassination — make it an issue of grave concern for us all.

One of the best ways to combat the spread of fake news on the internet is to understand where the false information was started and how it was disseminated. And that’s exactly what Camille Francois, the chief innovation officer at Graphika, is doing. She’s dedicated to bringing to light disinformation campaigns before they take hold.

A susceptibility to gain weight may be written into molecular processes of human cells, a Washington State University study indicates.

The proof-of-concept study with a set of 22 found an epigenetic signature in buccal or cheek cells appearing only for the twins who were obese compared to their thinner siblings. With more research, the findings could lead to a simple cheek swab test for an obesity biomarker and enable earlier prevention methods for a condition that effects 50% of U.S. adults, the researchers said.

“Obesity appears to be more complex than simple consumption of food. Our work indicates there’s a susceptibility for this disease and molecular markers that are changing for it,” said Michael Skinner, a WSU professor of biology and corresponding author of the study published in the journal Epigenetics.

Japanese scientists have developed a new type of plastic that’s strong at room temperature, but can be easily broken down on demand into its base components. In seawater, it starts to break down into food for marine life, and just to top it off, it can self-heal and remember past shapes.

Plastic is everywhere in our modern world, for better or worse. Its toughness makes it an extremely useful material for everything from household items to vehicle parts, but that same toughness makes it hard to break down for recycling or disposal.

In the new study, scientists at the University of Tokyo developed a new plastic material that can be broken down more easily, either in recycling plants or in nature. It’s based on a class of plastic called an epoxy resin vitrimer, which are strong at room temperature but can be reshaped and molded with a bit of added heat. Normally, vitrimers are brittle, but the team improved the recipe by adding a molecule called polyrotaxane.

Surface-enhanced Raman scattering (SERS) is a powerful fingerprint analysis and detection technique that plays an important role in the fields of food safety, environmental protection, bio-imaging and hazardous substance identification. Electromagnetic enhancement (EM) and chemical enhancement (CM) are the two recognized mechanisms of action for amplifying Raman signals.

EM originates from the localized surface plasmonic resonance effect of noble metal nanostructures such as gold, silver, and copper, while CM originates from the charge transfer between the substrate and the probe molecules. In principle, the charge transfer efficiency depends on the coupling of the incident laser energy to the energy levels of the substrate-molecule system.

Compared to EM-based SERS substrates, CM-based SERS substrates are usually made of including semiconductor oxides, metal carbides, and graphene and its evolutions, which have weaker signal enhancement capabilities. However, the advantages of CM-based SERS substrate, such as high specificity, homogeneity and biocompatibility, have attracted the attention of researchers.

Plants are not just able to survive in low gravity such as on the Moon, two new papers suggest – they may prefer it, at least based on the only species to sprout.

When Chang’e 4 landed on the Moon in January 2019 it carried with it a payload that could dictate the future of space exploration: seeds of four plant species it sought to grow on the lunar surface. The germination of a single cotton seed attracted plenty of attention at the time, but there’s more to growth than just sprouting. If crops grown on the Moon are less productive or more fragile than those on Earth, it’s going to be a big problem.

It’s taken more than four years, but important results from the experiment have now been released and they suggest that for all the obstacles to establishing colonies on the Moon and Mars, growing food might not be one. Then again, it’s still very early days.

Indian start-up Green Robot Machinery (GRoboMac) has developed a cotton picker with autonomous robotic arms, mounted on a semi-autonomous electric farm vehicle.

The robotic arms of the battery-operated machine are each capable of picking about 50 kgs cotton per day. That means that four arms, mounted on the vehicle, can pick about 200 kgs per day. High yielding farms can use additional arms, the company says.