Toggle light / dark theme

FDA approves pink, genetically engineered pineapple from Del Monte

(FoxNews.com) — Food producer Del Monte has received approval from the Food and Drug Administration to start selling a genetically engineered pineapple with pink flesh.

The new species Ananas comosus has been given the more consumer-friendly name of the “Rosé” and, according to The Packer, Del Monte has quietly been working on the fruit’s development since 2005.

So what makes the usually golden-colored fruit pink? The patened pineapple DNA is injected with a healthy dose of lycopene, the bright red pigment found in tomatoes and watermelons.

Monster-wheat grown by Oxford could revolutionise farming

A crop spray which can boost farmer’s wheat yields by one fifth, without the need for genetic modification, has been developed by scientists at Oxford University.

Researchers have found a molecule which helps plants make the best use of the sugary fuel that they generate during photosynthesis. And with more fuel, the plants can produce bigger grains.

Other scientists in Britain have developed ways to genetically modify crops to increase yields, and the Department of Environment is currently deciding whether to allow a field trial for GM wheat in Hertfordshire.

Turning the potential of electronic printables into a real breakthrough

Those “sell by” or “best by” dates that you see on food packaging? They’re so last century. In the future, built-in sensors in food labels will not only tell you when a product is going bad but also if you’re storing it correctly. Some might even be able to give you a breakdown of its nutritional data. All this is thanks to developments in the burgeoning world of printable electronics. Now researchers at MIT have invented a printing process that could turn a lot of the potential breakthroughs, such as electricity-generating clothing and smart sutures we’ve been seeing in this space, into an inexpensive reality.

“There is a huge need for printing of electronic devices that are extremely inexpensive but provide simple computations and interactive functions,” says A. John Hart, an associate professor in contemporary technology and mechanical engineering.

While some researchers have been studying the possibility of using inkjet printing and rubber stamping, these techniques have produced mixed results at best, often resulting in fuzzy, coffee-ring patterns or incomplete circuits due to the difficulty of controlling ink flow at such small scales.

New Plant Synbio Tool Breaks With Tradition

JBEI researchers develop efficient and affordable method for plant DNA assembly.

Researchers at the U.S. Department of Energy (DOE)’s Joint BioEnergy Institute (JBEI) in collaboration with Berkeley Lab’s Environmental Genomics & Systems Biology Division and the DOE Joint Genome Institute developed a versatile system (named jStack) which utilizes yeast homologous recombination to efficiently assemble DNA into plant transformation vectors. The new approach will impact plant engineering for the bioenergy, agricultural and pharmaceutical industries.

Although synthetic biology has provided solutions to many societal challenges, little research has been devoted to advancing synthetic biology in plants. Microbes, such as yeast and Escherichia coli (E. coli), have received much of the attention in developing synthetic biology tools due to their fast generation time and the ease of working with these organisms in laboratories. A shortage of characterized DNA parts, along with the difficulty of efficiently assembling multiple and large fragments of DNA into plant transformation vectors, has limited progress in studying and engineering plants to the same degree as their microbial counterparts.

Study: Ice Cream For Breakfast Boosts Brain Performance

PHILADELPHIA (CBS) — All the years of your parents saying “NO” to ice cream for breakfast may have actually stunted your brilliance.

According to The Telegraph, a new study performed by Yoshihiko Koga, a professor at Kyorin University in Tokyo, revealed that eating a certain amount of ice cream immediately after waking up in the morning can actually make you smarter.

No, you did not misread that!

Changes in the diet affect epigenetics via the microbiota

You get out what you put in.


You are what you eat, the old saying goes, but why is that so? Researchers have known for some time that diet affects the balance of microbes in our bodies, but how that translates into an effect on the host has not been understood. Now, research in mice is showing that microbes communicate with their hosts by sending out metabolites that act on histones—thus influencing gene transcription not only in the colon but also in tissues in other parts of the body. The findings publish November 23 in Molecular Cell.

“This is the first of what we hope is a long, fruitful set of studies to understand the connection between the microbiome in the gut and its influence on host health,” says John Denu, a professor of biomolecular chemistry at the University of Wisconsin, Madison, and one of the study’s senior authors. “We wanted to look at whether the gut microbiota affect epigenetic programming in a variety of different tissues in the host.” These tissues were in the proximal colon, the liver, and fat .

In the study, the researchers first compared germ-free mice with those that have active gut microbes and discovered that gut microbiota alter the host’s epigenome in several tissues. Next, they compared mice that were fed a normal chow diet to mice fed a Western-type diet—one that was low in complex carbohydrates and fiber and high in fat and simple sugars. Consistent with previous studies from other researchers, they found that the of mice fed the normal chow diet differed from those fed the Western-type diet.