Toggle light / dark theme

Study observes the interactions between live fish and fish-like robots

In recent decades, engineers have created a wide range of robotic systems inspired by animals, including four legged robots, as well as systems inspired by snakes, insects, squid and fish. Studies exploring the interactions between these robots and their biological counterparts, however, as still relatively rare.

Researchers at Peking University and China Agricultural University recently set out to explore what happens when live fish are placed in the same environment as a robotic fish. Their findings, published in Bioinspiration & Biomimetics, could both inform the development of fish-inspired robots and shed some new light on the behavior of real fish.

“Our research team has been focusing on the development of self-propelled robotic fish for a considerable amount of time,” Dr. Junzhi Yu, one of the researchers who carried out the study, told Tech Xplore. “During our , we observed an exciting phenomenon where live fish were observed following the swimming robotic fish. We are eager to further explore the underlying principles behind this phenomenon and gain a deeper understanding of this ‘fish following’ behavior.”

This Company Is Using Enzymatic DNA Synthesis To Usher In The Next Generation Of Synthetic Biology Innovation

DNA writing is an aspect of our industry that I’ve been closely watching for several years because it is a critical component of so many groundbreaking capabilities, from cell and gene therapies to DNA data storage. At the SynBioBeta Conference in 2018, the co-founder of a new startup that was barely more than an idea gave a lightning talk on enzymatic DNA synthesis — and I was so struck by the technology the company was aiming to develop that I listed them as one of four synthetic biology startups to watch in 2019. I watched them, and I wasn’t disappointed.

Ansa Biotechnologies, Inc. — the Emeryville, California-based DNA synthesis startup using enzymes instead of chemicals to write DNA — announced in March the successful de novo synthesis of a 1005-mer, the world’s longest synthetic oligonucleotide, encoding a key part of the AAV vector used for developing gene therapies. And that’s just the beginning. Co-founder Dan Lin-Arlow will be giving another lightning talk at this year’s SynBioBeta Conference in just a few weeks. I caught up with him in the lead up and was truly impressed by what Ansa Biotechnologies has accomplished in just 5 years.

Synthetic DNA is a key enabling technology for engineering biology. For nearly 40 years, synthetic DNA has been produced using phosphoramidite chemistry, which facilitates the sequential addition of new bases to a DNA chain in a simple cyclic reaction. While this process is incredibly efficient and has supported countless innovative breakthroughs (a visit to Twist Bioscience’s website will quickly educate you on exciting advances in drug discovery, infectious disease research, cancer therapeutics, and even agriculture enabled by synthetic DNA) it suffers from two main drawbacks: its reliance on harsh chemicals and its inability to produce long (read: complex) DNA fragments.

Resurrecting a 2.6 billion-year-old ancient CRISPR system

Incapable of replicating on their own, viruses must hijack other organisms, like bacteria, to continue their existence. Little wonder, then, that bacteria had to develop ways to fight back.

Among them is CRISPR, a kind of an immune system that keeps DNA records of previous infections and then uses a protein called Cas to attack viruses that show up again. When Cas reaches a targeted virus, it cleaves the viral DNA, protecting the bacteria from infection.

Researchers have harnessed that targeted, DNA-snipping ability as a gene editing tool for all kinds of organisms. CRISPR can now be found in a variety of fields doing a variety of jobs, from helping to fight sickle cell and high cholesterol in humans to gene editing animals and crops. It’s proven to be an amazingly versatile tool.

Rare fossils fill a gap in the evolution of major animal groups

Exceptionally well-preserved fossils from the Cambrian period have helped fill a gap in our understanding of the origin and evolution of major animal groups alive today.

A new analysis of fossils belonging to an extinct invertebrate called Rotadiscus grandis have helped place this species in the animal tree of life, revealing how some characteristics of living species may have evolved independently rather than originating in a single common ancestor.

Half a billion years ago, an unusual-looking animal crawled over the sea floor, using tentacles to pick up food particles along the way.

Astronomers Capture a Star Swallowing a Planet

For the first time, astronomers have spotted an evolving star engulfing an orbiting planet.

When our Sun nears the end of its life, it will start to swell. During this expansion, which is expected to happen in some 6 billion years, the dying Sun will engulf our Solar System’s inner planets, including Earth. Though scientists are certain of Earth’s far-future fate, no direct observation had been made of a dying star swallowing an orbiting planet, until now [1].

The unique observation comes from Kishalay De of the Massachusetts Institute of Technology and his colleagues. The team found the planet-eating star in data taken as part of the Zwicky Transient Facility (ZTF), a large-area optical survey of the night sky. While comparing a few weeks’ worth of consecutive ZTF scans—a new survey of the sky is performed every 48 hours—a brightening star 12,000 light-years from Earth caught De’s attention, he says.

Wendy’s, Google preview partnership with new AI-powered drive-thru

Customers will be ordering food from AI.


#Wendys #Google #yahoofinance.
Yahoo Finance culinary correspondent Brooke DiPalma joins the Live Show to discuss the partnership between Wendy’s and Google to revolutionize drive-thru orders with the use of AI technology, first premiering in Columbus.

Ohio in June of this year, and how AI is transforming the restaurant industry.

About Yahoo Finance:
At Yahoo Finance, you get free stock quotes, up-to-date news, portfolio management resources, international market data, social interaction and mortgage rates that help you manage your financial life.

Yahoo Finance Plus: With a subscription to Yahoo Finance Plus get the tools you need to invest with confidence. Discover new opportunities with expert research and investment ideas backed by technical and fundamental analysis. Optimize your trades with advanced portfolio insights, fundamental analysis, enhanced charting, and more.

BacterAI: New AI system enables robots to conduct 10,000 scientific experiments a day

Artificial intelligence-powered BacterAI accurately predicts the necessary amino acid combinations for growth 90% of the time.

A group of scientists has created a system powered by artificial intelligence (AI) that enables robots to conduct as many as 10,000 scientific experiments independently in a single day.

The AI system, named BacterAI, could significantly accelerate the pace of discovery in a range of fields such as medicine, agriculture, and environmental science. In a recent research study released in Nature Microbiology, the team successfully utilized BacterAI to map the metabolic processes of two microbes linked with oral health.

High concentrations of floating neustonic life in the plastic-rich North Pacific Garbage Patch

Floating life (neuston) is a core component of the ocean surface food web, but the Sargasso Sea in the North Atlantic is the only known region of high neustonic abundance. This study reveals high densities of floating life in the plastic-rich Great Pacific Garbage Patch, suggesting that this area could be an important marine habitat.

/* */