Toggle light / dark theme

Researchers at Rice University have shown how they can hack the brains of fruit flies to make them remote controlled. The flies performed a specific action within a second of a command being sent to certain neurons in their brain.

The team started by genetically engineering the flies so that they expressed a certain heat-sensitive ion channel in some of their neurons. When this channel sensed heat, it would activate the neuron – in this case, that neuron caused the fly to spread its wings, which is a gesture they often use during mating.

The heat trigger came in the form of iron oxide nanoparticles injected into the insects’ brains. When a magnetic field is switched on nearby, those particles heat up, causing the neurons to fire and the fly to adopt the spread-wing pose.

Shockwaves caused by asteroids colliding with Earth create materials with a range of complex carbon structures, which could be used for advancing future engineering applications, according to an international study led by UCL and Hungarian scientists.

Published today in Proceedings of the National Academy of Sciences, the team of researchers has found that formed during a high-energy shock wave from an around 50,000 years ago have unique and exceptional properties, caused by the short-term high temperatures and extreme pressure.

The researchers say that these structures can be targeted for advanced mechanical and electronic applications, giving us the ability to design materials that are not only ultra-hard but also malleable with tunable electronic properties.

So precise.


If chemists built cars, they’d fill a factory with car parts, set it on fire, and sift from the ashes pieces that now looked vaguely car-like.

When you’re dealing with car-parts the size of atoms, this is a perfectly reasonable process. Yet chemists yearn for ways to reduce the waste and make reactions far more precise.

Chemical engineering has taken a step forward, with researchers from the University of Santiago de Compostela in Spain, the University of Regensburg in Germany, and IBM Research Europe forcing a single molecule to undergo a series of transformations with a tiny nudge of voltage.

Lockheed Martin has been busy this year. In April of 2022, the Defense Advanced Research Projects Agency (DARPA) and its U.S. Air Force partner announced that they had completed a free flight test of the Lockheed Martin version of the Hypersonic Air-breathing Weapon Concept (HAWC).

Then just last month, the U.S. Department of Defense (DoD) awarded the company a contract to construct the nation’s first megawatt-scale long-duration energy storage system. Under the direction of the U.S. Army Engineer Research and Development Center’s (ERDC) Construction Engineering Research Laboratory (CERL), the new system, called “GridStar Flow,” will be set up at Fort Carson, Colorado.

In the same time frame, General Motors and the firm announced their plans to produce a series of electric moon rovers for future commercial space missions. The companies said they plan aim to test the batteries developed by GM, in space later this year. They also set the ambitious goal of testing a prototype vehicle on the moon by 2025.

Tech major Google is reportedly slowing down its hiring processes for the rest of 2022. According to a memo by CEO Sundar Pichai to employees, obtained by The Verge, Google will still support its “most important opportunities”, and focus on hiring engineering, technical and other critical roles.

Until now, Google has remained relatively immune to economic uncertainties, and in fact, its sister brand YouTube did well in Q4 2020 — first year of the Covid-19 pandemic. It was reported that its ad revenue hit $6.9 billion — up by 46% quarter-on-quarter. Pichai, in his memo, also highlights that the company hired approximately 10,000 employees in the second quarter of this year, and has a “number of commitments for Q3”, Pichai said in the memo adding that “Google will pause the hiring process for the rest of the year”.

“For the balance of 2022 and 2023, we’ll focus our hiring on engineering, technical and other critical roles, and make sure the great talent we do hire is aligned with our long-term priorities,” he reportedly wrote in the memo.

Ritu Raman leads the Raman Lab, where she creates adaptive biological materials for applications in medicine and machines.

It seems that Ritu Raman was born with an aptitude for engineering. You may say it is in her blood since her mother is a chemical engineer, her father is a mechanical engineer, and her grandfather is a civil engineer. Throughout her childhood, she repeatedly witnessed firsthand the beneficial impact that engineering careers could have on communities. In fact, watching her parents build communication towers to connect the rural villages of Kenya to the global infrastructure is one of her earliest memories. She still vividly remembers the excitement she felt watching the emergence of a physical manifestation of innovation that would have a long-lasting positive impact on the community.

Raman is “a mechanical engineer through and through,” as she puts it. She earned her BS, MS, and PhD in mechanical engineering. Her postdoctoral work at MIT.

A team of researchers led by Virginia Tech’s Michael Bartlett have developed an octopus-inspired glove capable of securely gripping objects underwater. Their research was selected for the July 13 cover of Science Advances.

Humans aren’t naturally equipped to thrive in an . We use tanks to breathe, neoprene suits to protect and warm our bodies, and goggles to see clearly. In such an environment, the human hand also is poorly equipped to hold onto things. Anyone who has tried to hold onto a wriggling fish will testify that underwater objects are difficult to grip with our land-dwelling fingers.

“There are critical times when this becomes a liability,” said Bartlett, an assistant professor in the department of mechanical engineering. “Nature already has some great solutions, so our team looked to the for ideas. The octopus became an obvious choice for inspiration.”